
Geometrical k-cut Problem and An Optimal Solution for
Hypercubes

Sang-Young Cho
Hankuk University of Foreign Studies

Computer Science and Engineering Department
Wangsan Mohyeon Yongin Kyeonggi

Korea
sycho@hufs.ac.kr

Abstract: We introduce a generalization of the (s, t)-cut problem, called the Geometrical k-cut problem, with
the concept of geometrical partitioning. A topology graph is employed to represent the geometrical structure of
the partitioned nodes of a given k-terminal graph. This problem is NP-hard in general. We propose an optimal
algorithm to solve the problem for hypercube topology graphs in polynomial time. The time complexity of the
algorithm is O(qn3), where q is the dimension of a hypercube graph and n is the number of nodes in a k-terminal
graph, with the Goldberg-Tarjan’s network flow algorithm.

Key–Words: complexity, k-cut, hypercube, max-flow, min-cut, multi-terminal graph, partitioning, topology

1 Introduction
Given an undirected graph G = (V, E) with positive
edge weights and two terminals s, t ∈ V , an (s, t)-cut
is a set of edges which, when deleted, partitions V into
two subsets V1 and V2 such that s ∈ V1 and t ∈ V2.
An (s, t)-cut is a minimum (s, t)-cut if the sum of the
edge weights in the (s, t)-cut is minimum. For any
s, t ∈ V , the well-known max-flow min-cut theorem
[2] allows us to find a minimum (s, t)-cut in polyno-
mial time by applying a maximum flow algorithm [1],
[3].

An extension of the minimum (s, t)-cut problem
is called the specified k-cut problem, which has nu-
merous applications, particularly in clustering-related
setups such as task assignment [8] and VLSI cell
placement [9]. The problem considers an undirected
k-terminal graph G = (V, E) with positive edge
weights and a set of prescribed k(≤ n) nodes called
terminal nodes, where V = {vi|1 ≤ i ≤ n} and each
edge of E is an unordered pair of nodes (vi, vj) in V .
A k-cut is a set of edges which, when deleted, parti-
tions V into k subsets {Vi|1 ≤ i ≤ k}. The aim is to
find a minimum weight k-cut so that each subset con-
tains exactly one node of the given k. The minimum
(s, t)-cut problem is therefore an instance of the spec-
ified k-cut problem where k = 2. The specified k-cut
problem is NP-hard even for k = 3 [4].

In this paper, we introduce a generalization of the
specified k-cut problem with the concept of Geomet-
rical Partitioning. In the specified k-cut problem, the
contribution of each edge in a k-cut to the cut weight

is assumed to be just the edge weight. In our new
problem we assume that each partitioned subset Vi re-
sides in a distinct area and there exists a geometrical
distance between two distinct areas. If an edge (vi, vj)
is included in a k-cut as a result of a partitioning, then
the contribution of (vi, vj) to the partition cost (cut
weight) is not merely the weight of (vi, vj). Rather, its
contribution is compensated by the geometrical dis-
tance between the two partitioned subsets which con-
tain vi and vj respectively. In the remaining of this
paper, the term Geometrical Partitioning refers to a
partitioning of a k-terminal graph with a specified ge-
ometrical structure of k subsets so that the partitioning
cost is compensated by the geometrical distances be-
tween the partitioned subsets.

(a) A three-terminal graph. (b) A non-optimal solution for the specified k-cut problem.

v4

v5

v6

v8

v7

2

3

84

3 2

3
2

3
4

1

v4

v5

v6
v8

v72 3

84

3
2

3

2

3 4

1

V1

V2

V3

v1

v2

v3 v1

v2

v3

Figure 1: An example of a three-terminal graph and a
possible three-cut.

Fig. 1(a) shows an example of a three-terminal
graph where v1, v2, and v3 are terminal nodes. Fig.
1(b) shows a possible 3-cut of the graph, namely
{(v1, v2), (v4, v6), (v2, v3), (v6, v8), (v3, v5)}. The
nodes of the graph are partitioned into three subsets:

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          217



V1, V2, and V3, and each subset has exactly one termi-
nal node. In the specified k-cut problem, the weight of
a k-cut is the summation of the weights of the edges
in the k-cut. Therefore the weight of the 3-cut shown
in Fig. 1(b) is 14. To explain geometrical partitioning,
let us assume that the distance between V1 and V2 is
1, that between V2 and V3 is 1, and that between V3

and V1 is 2. Accordingly, for example, the contribu-
tion of (v3, v5) is defined to be the weight of the edge
times the distance between V1 and V3, i.e., 2× 2 = 4,
assuming that the cost of an edge in the cut is propor-
tional to its distance. Therefore, in our new problem,
the weight of the k-cut is 16, i.e., 2×1 + 3×1 + 3×1
+ 4×1 + 2×2. The new partitioning problem, called
the Geometrical k-cut Problem (GKP), is NP-hard be-
cause the problem is equivalent to the specified k-cut
problem [4] if the distance between any two subsets is
one.

The geometrical distances between partitioned
subsets can be represented by a connected graph,
called Topology Graph. For example, a three-node
linear array can represent the distances between the
nodes of the graph shown in Fig. 1(b) if they are ar-
ranged in the order of V1, V2, and V3. We propose
an algorithm to solve the problem when the topology
graph is a hypercube graph in polynomial time.

This paper is organized as follows. In Section 2,
we give a formal definition of GKP. Section 3 suggests
our approach for the problem in case of hypercube
topology graphs. The paper is concluded in Section
4.

2 Problem Description
Consider an undirected graph G with k terminal nodes
and positive edge weights, where G = (V, E), V is a
set of n nodes, {vi|1 ≤ i ≤ n}, and E is a set of
edges where each edge (vi, vj) is an unordered pair of
nodes of V . The weight of an edge (vi, vj) is denoted
as wi,j = wj,i. Without loss of generality, let the set
of k terminal nodes be K = {vi|1 ≤ i ≤ k ≤ n}.

The geometrical distances between k partitioned
subsets can be modeled by a topology graph GT =
(P, L), where P is a set of k points, {pi|1 ≤ i ≤ k},
and L is a set of lines where each line corresponds to
an unordered pair of points in P . We use the terms
point and line instead of node and edge to distinguish
topology graphs from terminal graphs, where a point
corresponds to a location at which one of the parti-
tioned subsets should be located. If two points are
geometrically adjacent to each other, a line is created
to connect them. Non-adjacent points are connected
via other points along a path between them. We de-
fine the distance di,j between any two points pi and pj

to be the minimum number of lines connecting them.
We assume that the distance between any two adjacent
points is one. Obviously di,i = 0.

A partition of V into k subsets can be represented
by a mapping function. A mapping M of the nodes V
to the points P of GT is a function M : vi → pM(i),
i.e., M(i) is the index of the point onto which vi is
mapped. We define M−1(i) = {vj |M(j) = i} for
1 ≤ i ≤ k.

We assume that each terminal node has a fixed
mapping and, without loss of generality, M(i) = i
for 1 ≤ i ≤ k, i.e., vi should be mapped into pi.
A mapping Mf is said to be feasible if each M−1(i)
contains vi of K.

We define the cost of an edge (vi, vj) under a
mapping M to be wi,j · dM(i),M(j), i.e., the cost of an
edge is proportional to the distance between its two
mapped points. The cost of a mapping Cost(M) is
defined to be the sum of the cost contributions made
by all the edges of G:

Cost(M) =
∑

i<j

wi,j · dM(i),M(j) .

Note that the cost of an edge (vi, vj) is zero if vi and
vj are mapped into the same point.

The Geometrical k-Cut Problem (GKP) can now
be formulated as follows: Given a k-terminal graph
G = (V, E) and a topology graph GT = (P, L) as
described earlier, find a feasible mapping Mf of the
nodes of V onto the points of P such that Cost(Mf )
is minimized.

In general, GKP is NP-hard because the problem
can be reduced to the specified k-cut problem (which
is NP-hard even for k = 3 [4]) if the topology graph
is assumed to be a fully-connected graph; in this case
the distance between any two points is one and the
cost function can be represented as follows:

Cost(M) =
∑

i<j,M(i) 6=M(j)

wi,j ,

which is the cut weight in the specified k-cut problem.

3 Hypercubes and Solution
In this section, the product graph operator is intro-
duced to recursively construct a type of hypercube
graphs starting from trivial one-point graphs. Us-
ing these graph operators, a graph expression can ex-
press a hypercube topology in a hierarchical form.
Our solution to GKP is presented in a recursive form
based on the hierarchical representation of a hyper-
cube graph.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          218



Definition 1 (product operator) Given two topology
graphs G1

T = (P 1, L1) and G2
T = (P 2, L2), the prod-

uct operator¯ produces a product of G1
T and G2

T , de-
noted as GT , where GT = (P, L) = G1

T ¯ G2
T such

that P = P 1 × P 2 = {(p2
x, p1

y)| p2
x ∈ P 2, p1

y ∈ P 1}
and any two points pi = (p2

w, p1
x) and pj = (p2

y, p
1
z) in

P are adjacent in GT if (1) p2
w = p2

y and p1
x is adja-

cent to p1
z in G1

T , or (2) p1
x = p1

z and p2
w is adjacent to

p2
y in G2

T .

(b) The result of the product operator.

p
1
1 p

2
1 p

3
1

p
1
1 p

2
1 p

3
1

p
1
2

p
2
2

p
1
2

p
2
2

p
1
2

p
2
2

= G 2
TG 1

TGT

12

p
1

(c) The hierarchy tree.

11

p
1

p
1

11

p
1

p
1

G 2
TG 1

T

(a) Two topology graphs.

p
1
1 p

2
1 p

3
1

p
1
2

p
2
2

Figure 2: An example of the product operator.

Fig. 2 shows an example use of the product op-
erator. The generated topology graph GT contains
|P 1|·|P 2| points and |P 1| · |L2|+ |P 2| · |L1| lines. To
address the points of the generated GT , we associate
each product operator with an index function A¯. Let
a point of GT be generated with p2

i and p1
j . The in-

dex pair (i, j) denotes the generated point. Let all
the points of GT be lexicographically sorted by index
pairs. Assuming the point with index pair (i, j) is the
w-th element in the sorted list, the point is addressed
as pw by the index function A¯, i.e., A¯(p2

i , p
1
j ) =

pw. In Fig. 2 (b), A¯(p2
1, p

1
1) = p1, A¯(p2

1, p
1
2) =

p2, A¯(p2
1, p

1
3) = p3, A¯(p2

2, p
1
1) = p4, A¯(p2

2, p
1
2) =

p5, and A¯(p2
2, p

1
3) = p6. The hierarchy tree shown in

Fig. 2 (c) is built for the GT shown in Fig. 2 (b); ⊕
means connecting two graphs with a line.

Definition 2 (hypercube topology graph) A binary
n-cube or an n-dimensional hypercube, Qn, is defined
recursively as follows:

1. Q0 is a trivial graph with one point, and

2. Qq = K2 ¯Qq−1, where K2 = Q0 ⊕Q0 [5].

Consider a GKP instance with a k-terminal graph
G = (V, E) and a topology graph GT = (P, L). If
GT is a hypercube graph, the GKP instance is called
a Geometrically Cuttable k-cut Problem (GCKP) and
denoted by the pair [G,Qq]. We assume that Qq is
associated with a corresponding hierarchy tree H and
each operator in the tree is associated with an index
function. Note that we assumed each terminal node
vi, 1 ≤ i ≤ k, is, without loss of generality, mapped
into the point pi. The term specified is used to reflect
this static mapping constraint for the terminal nodes.

Given a GCKP [G,Qq], we can transform the
original problem into several subproblems such that
each subproblem is an (s, t)-cut problem, which can
be solved optimally using an existing network-flow
algorithm. By combining the solutions for the sub-
problems we can obtain the solution for the original
problem whose cost is the sum of the costs of the sub-
problems. Our strategy for solving GCKP follows the
divide-and-conquer methodology which allows solu-
tions of GCKP to be found efficiently.

Given a GCKP [G,Qq] with a corresponding hi-
erarchy tree H , let us traverse H from the top level to
the bottom level. Whenever a product operator is vis-
ited, two independent subproblems can be created so
that the optimal solutions for the subproblems can de-
termine an optimal solution for the original problem.
The two subproblems are created with the following
rule, Rule 3:

Rule 3 Assume that GT = G1
T ¯ G2

T , where G1
T =

(P 1, L1), G2
T = (P 2, L2), and GT = (P, L), and an

index function A¯ is associated with the product op-
erator.

1. For each terminal node vw of G, declare it to
be specified into a point p1

j , resp. p2
i , if px =

A¯(p2
i , p

1
j ) and vw is specified into px.

2. For all points of subtopology graphs, combine
the nodes specified into p1

j , resp. p2
i , into a single

super node and call the node v′j , resp. v′i. De-
clare that v′j , resp. v′i, is specified into p1

j , resp.
p2

i . A super node maintains a list of its compo-
nent nodes.

3. With G1
T , resp. G2

T , and the generated |P 1|-
terminal, resp. |P 2|-terminal, graph G1, resp.
G2, make a new subproblem [G1, G1

T ], resp.
[G2, G2

T ].

(a) A six-terminal graph.

p1 p2 p3

p4 p5 p6

(b) A topology graph. (c) A feasible mapping.

2

3

3

4

3 2

3

2

3

4

1
1

v11

5

v8

v7 v9

v10
3

v1

v2 v3

v5

v6
v4

2 3

3

4

3
2

3

2

3

4

11

v11

5

v8

v7 v9

v10

3

p1 p2 p3

p4 p5 p6

v3

v6

v5

v2v1

v4

Figure 3: Example of a topology graph with product
operator.

Fig. 4 shows the two subproblems generated from
the example shown in Fig. 3 (a) and (b) with the hi-
erarchy tree shown in Fig. 2 (b) and (c). In the first
step of Rule 3, v1 is specified into p1

1 of G1
T and p2

1 of
G2

T , v2 into p1
2 and p2

1, v3 into p1
3 and p2

1, v4 into p1
1

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          219



(a) A subproblem with a three-terminal graph. (b) A subproblem with a two-terminal graph.

2 6

4

3 2

3

2
3 4

11
v11

v8

v7 v9

v10

G 1
T

p
1
1 p

2
1 p

3
1

8

v2

v1

v3

G 1

12

p
111

p
1

p
1

2 3

3

4

3
2

3

2

3

4

11
v11

5

v8

v7 v9

v10

3

G 2

G 2
T

p
1
2

p
2
2

11

p
1

p
1

v2

v1

v1

v4

v2 v5

v3

v6

v1 v2 v3

v4 v5 v6

Figure 4: Two-subproblem example in the product op-
erator case.

and p2
2, v5 into p1

2 and p2
2, and v6 into p1

3 and p2
2. Then

the nodes specified into the same point are combined
into a single node. For the subproblem shown in Fig.
4 (a), v1 and v4 become v′1 which is specified into p1

1,
v2 and v5 become v′2 which is specified into p1

2, and
v3 and v6 become v′3 which is specified into p1

3. Sim-
ilarly, for the subproblem shown in Fig. 4 (b), v1, v2,
and v3 become v′1 which is specified into p2

1, and v4,
v5, and v6 become v′2 which is specified into p2

2. Fi-
nally, with G1

T and G2
T , and the generated 3-terminal

graph G1 and the 2-terminal graph G2, we make two
subproblem [G1, G1

T ] and [G2, G2
T ].

If M1
f
′ and M2

f
′ are feasible mappings for the

generated subproblems [G1, G1
T ] and [G2, G2

T ], let
M1

f and M2
f be the mappings obtained from M1

f
′ and

M2
f
′ by translating each mapping from a super node

to a point into mappings from the associated compo-
nent nodes to the point. We determine a mapping M
for the original problem with the following rule, Rule
4:

Rule 4 M(x) = w if pw = A¯(p2
i , p

1
j ), M1

f (x) = j,
and M2

f (x) = i.

It is not difficult to see that the mapping M obtained
from Rule 4 is a feasible mapping.

Lemma 5 Given [G, GT ] with GT = G1
T ¯ G2

T , as-
sume that [G1, G1

T ] and [G2, G2
T ] are the subproblems

of [G,GT ] obtained by applying Rule 3. Also assume
that Mf is a feasible mapping of [G,GT ] by applying
Rule 4 with M1

f and M2
f which are feasible mappings

of [G1, G1
T ] and [G2, G2

T ]. The cost of the mapping
Mf can be computed as follows:

Cost(Mf ) = Cost(M1
f ) + Cost(M2

f ). (1)

Proof: The contribution of an edge (vx, vy)
to Cost(Mf ) is wx,y · dMf (x),Mf (y). By Rule
4 pMf (x) = A¯(p2

M2
f
(x)

, p1
M1

f
(x)

) and pMf (y) =

A¯(p2
M2

f (y)
, p1

M1
f (y)

). The distance dMf (x),Mf (y) is

the sum of two distances: dM1
f
(x),M1

f
(y) in G1

T and

dM2
f
(x),M2

f
(y) in G2

T . Consequently the cost of the
mapping Mf , Cost(Mf ), is

∑
x<y

wx,y · dMf (x),Mf (y)

=
∑
x<y

wx,y ·
(

dM1
f
(x)1,M1

f
(y) + dM2

f
(x),M2

f
(y)

)

=
∑
x<y

wx,y · dM1
f
(x),M1

f
(y) +

∑
x<y

wx,y · dM2
f
(x),M2

f
(y)

= Cost(M1
f ) + Cost(M2

f ).

This proves the lemma. ut
Lemma 5 shows that we can find an optimal solu-

tion for the original problem [G,GT ] if the subprob-
lems [G1, G1

T ] and [G2, G2
T ] can be solved optimally.

Therefore a GCKP instance with GT = G1
T ¯ G2

T
can be divided into two independent GCKP instances
which are associated with G1

T and G2
T respectively. In

case of hypercube topology graphs, G1
T is K2. That

means the subproblem is two-terminal graph and it
can be solved optimally using existing max-flow min-
cut algorithms.

The overall algorithm for GCKP can be described
in the following:

Algorithm : HYPER
Input : G = (V, E) and Qq = (P, L)

with a hierarchy tree H
Output: a mapping function M(·) //M : vi → pM(i)//
if the top level operator is ⊕ then

// the topology of subproblem is K2 //
find a minimum cut C = (V1, V2) in the
generated two-terminal graph;
make two subproblems [G1, G1

T ] and [G2, G2
T ]

with C;
for vx ∈ V

determine Mf (x) with the cut result;
endfor
return with Mf (·);

else // GT = G1
T ¯G2

T //
// apply Rule 3 //
make two subproblems [G1, G1

T ] and [G2, G2
T ]

as explained in Rule 3;
M1

f
′(·) = HYPER(G1, K2);

M2
f
′(·) = HYPER(G2, Qn−1);

Get M1
f and M2

f by extending each super node
into its component nodes;
for vx ∈ V

determine Mf (x) by Rule 4;
endfor
return with Mf (·);

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          220



endif
end. // exit with the mapping Mf (·) //

Given [G, ], the algorithm HYPER recursively ex-
plores the hierarchy tree corresponding to Qq. When-
ever a topology graph is K2, the algorithm finds a cut
which can be used to determine a partial mapping for
the problem. This step is the most time-consuming
step because each of the other steps can be imple-
mented with linear complexity.

A minimum (s, t)-cut can be found in polyno-
mial time by applying any existing maximum flow al-
gorithm based on the max-flow min-cut theorem [2].
The Goldberg-Tarjan’s algorithm [3] is the best known
algorithm with time complexity O(EV log(V 2/E)),
where E and V are the number of edges and the num-
ber of nodes of a two-terminal graph, respectively. In
the worst case, the complexity is O(V 3) because E
can be up to V (V − 1)/2. Each two-terminal graph
generated during algorithm execution has at most n
nodes. Thus the time to find a minimum cut is not
worse than O(n3).

The algorithm HYPER should apply the maxi-
mum flow algorithm q times because the number of
K2’s is q in the hierarchy tree of Qq. Therefore,
GCKP can be solved in time not worse than O(qn3)
with the Goldberg-Tarjan’s network flow algorithm.
There is much room to reduce the execution time
of the algorithm HYPER. In fact, two subproblems
corresponding to a bridge operator have less than n
nodes. Ideally, the numbers of nodes, |V1| and |V2|,
are n/2. This can reduce a lot of running time. As-
sume that we generated several subproblems; and we
should find a minimum cut in each subproblem. In
this case we can find two minimum cuts for the sub-
problems at the same time by combining the source,
resp. terminal, nodes into one source, resp. terminal,
node and by making one two-terminal graph [6].

4 Conclusions
We have proposed a new k-cut problem, called the
Geometrical k-cut problem, with the concept of ge-
ometrical partitioning. The problem is an extension
of the existing (s, t)-cut problem and the specified k-
cut problem. This problem is NP-hard and thus in-
tractable for an arbitrary topology graph with a large
number of points and a large number of nodes.

We have proposed an optimal algorithm for hy-
percube topologies. The hypercube topology is recur-
sively defined with the graph operator product ¯ and
K2. Given k terminals and n nodes, we construct a set
of two-terminal graphs using the topological proper-

ties of the given hypercube topology graph. The prob-
lem is solved by applying the well-known maximum
flow algorithm to each of the two-terminal graphs.
The cuts, found by the algorithm HYPER, of the two-
terminal graphs determine the point into which each
node is mapped and the sum of the weights of the cuts
defines the total cost for the corresponding mapping.
Consequently, the Geometrical k-cut problem with
hypercube topologies can be solved in time no worse
than O(qn3), where q is the dimension of hypercube
graph, according to the Goldberg-Tarjan’s maximum
flow algorithm [3].

Acknowledgements: The research was supported
by MIC(Ministry of Information and Communica-
tion) Korea under the 2007 ITRC(Information Tech-
nology Research Center)support program supervised
by the IITA(Institute of Information Technology As-
sessment).

References:

[1] J. Edmonds and R. M. Karp, “Theoretical im-
provements in algorithmic efficiency for net-
work flow algorithms,” J. ACM, vol. 19, no. 2,
Apr. 1972, pp. 248–264.

[2] L. R. Ford and D. R. Fulkerson, Flows in Net-
works, Princeton, NJ: Princeton Univ. Press,
1962.

[3] A. V. Goldberg and R. E. Tarjan, “A new ap-
proach to the maximum flow problem,” J. of
ACM, vol. 35, no. 4, Oct. 1988, pp. 921–940.

[4] O. Goldschmidt and D. S. Hochbaum, “Polyno-
mial algorithm for the k-cut problem,” in Proc.
29th Annu. Symp. on Found. of Comput. Sci.,
1988, pp. 444–451.

[5] F. Harary, J. P. Hayes, and H. J. Wu, “A survey of
the theory of hypercube graphs,” Comput. Math.
Applic., vol. 15, July 1988, pp. 277–289.

[6] T. C. Hu, Combinatorial Algorithms, Addison-
Wesley Publishing Company, 1982.

[7] K. F. Korth and A. Silberschatz, Database Sys-
tem Concepts, 2nd Ed., McGraw-Hill Inc., 1991.

[8] V. M. Lo, “Heuristic algorithms for task assign-
ment in distributed systems,” IEEE Trans. Com-
put. C-37, no. 11, Nov. 1988, pp. 1384–1397.

[9] G. Vijayan, “Generalization of Min-Cut Parti-
tioning to Tree Structures and Its Applications,”
IEEE Trans. Comput. C-40, no. 3, Mar. 1991,
pp. 307–314.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          221


	Text4: 


