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Abstract: - This paper presents the design and modeling for servomotor position control using state-space technique. The 
aim of this paper is to compare the control performance between State-feedback controller with integral control and State-
feedback controller without integral control. A mathematical model of the system is derived and verified by 
SIMULINK/MATLAB. Full-state feedback controller with integral control and full-state feedback controller without 
integral control are proposed for the controller structures. The performances between these two structures are analyzed. 
Simulation results are given for performance verification. The paper is organized as follows. Section 1 provides brief 
introduction on the project. In section 2, a mathematical model of servomotor is discussed where the system is considered 
as a second order system. In section 3, state-space modeling for continuous and discrete time system is presented. 
Subsequently in section 4, full-state feedback controller using pole-placement design is derived. Case studies are provided 
in section 5 where simulation analyses are thoroughly discussed. Conclusions are given in section 6. It is expected that the 
State-feedback controller with integral control gives better performance as compared to State-feedback controller without 
integral control and can further be implemented using DDC via GUI. 
 
Key-words: Full-state feedback control, Bass and Gura’s approach, Graphical user interface, State-space, 
Servomotor, Direct digital control, Integral control. 
  
1 Introduction 
Direct digital control (DDC) is one form of the 
automatic control where DDC is termed as using a 
digital computer to interface directly with a plant or 
system as the control device [1]. The disparity between 
DDC and indirect digital control (supervisory control) is 
it does not require for any additional hardware to 
implement the controller. Everything from controller’s 
algorithms or structures in terms of codes and scripts can 
be manipulated and constructed inside the computer by 
the help of software. 
 The overall objectives of this project is to create and 
develop a graphical user interface (GUI) using Microsoft 
Visual Basic 6.0 that implements DDC and state-space 
technique in controlling servomotor shaft position. In 
designing the controller structures, full-state feedback 
with and without integral control [2] where pole-
placement design via Bass and Gura’s approach [3] is 
proposed. The full-state feedback controller via pole-
placement is chosen since it has the best performance 

compared to other controllers in terms of oscillation and 
settling time [4]. Moreover, the pole-placement design 
could also handle systems with time-varying state space 
representation [5], or systems with multiple operating 
conditions [6], as well as systems with multi-input-
multi-output (MIMO) signals requirement [7]. 
Normally, controller design for linear time-varying 
differential systems is generally a difficult problem, 
because of the fundamental problems related to the 
analysis of such systems [5]. For simplicity, the 
servomotor system will be analyzed as a linear time-
invariant (LTI) system, with only single-input and single 
output condition. This is due to the method has the 
properties of the flexibility of shaping the dynamics of 
the closed-loop system to meet the desired specifications 
[8]. 
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2 Modeling of Servomotor System 

 
Fig.1: Schematic of servomotor system 

 
Fig.2: Time domain block-diagram representation of 
servomotor system. 
 
Fig.1 above shows the schematic of the servomotor, 
meanwhile Fig.2 is the frequency-domain open loop 
block diagram constructed based on this schematic. 
Based on the block diagram of Fig.2, by ignoring the 
armature inductance of the system, the open loop 
transfer function for a second order armature controlled 
servomotor system is given as follows: 
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where 
Jm = equivalent inertia by the motor = 30 x 10-6 kgm2 

kb = back-emf constant = 60 x 10-3 Vsrad-1 
kt = motor torque constant = 17 x 10-3 NmA-1 
Ra = armature resistance = 3.2 Ω   
Dm = equivalent viscous density by the motor =small 
(cannot be quoted) 
 The armature inductance is ignored for simplicity of 
equation and controller derivation so that we’ll only be 
dealing with second order system.By substituting all the 
parameters into the equation (1), the open loop transfer 
function for the second order armature controlled 
servomotor system could be obtained as follows: 
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3 State-Space Modeling 
3.1 Modeling in continuous time 
Based on the block diagram of the servomotor as shown 
in Fig.2, the state variables for second order system are 
defined as:  

)(1 tx = )(tmθ  = angular displacement of the motor shaft 

)(2 tx =
dt

td m )(θ
= angular velocity of the motor shaft 

Meanwhile, the state input and state output for the 
second order system are defined as: 

)(tu = )(tea = input signal into the servomotor 
)(ty = )(1 tx = output signal from the servomotor 

Let )(1 tx
•

=
dt

tdx )(1 =
dt

td m )(θ
= )(2 tx           (3)     

Now let )(2 tx
•

=
dt

tdx )(2 = 2

2 )(
dt

td mθ           (4) 

By deriving equation (2), it could be obtained that 
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Therefore, the state-space representation of servomotor 
in space matrix could be expressed in this form: 
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3.2 Modeling in discrete time 
From equation (6), it could be re-written into 
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where M and N are defined as: 
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Lets the dynamic of the linear continuous-time 
servomotor system be represented by the following 
state and output equations respectively:  

)(tx
•

= )()( tGrtFx +                   (11) 
)(ty = )()( tDrtCx +               (12) 
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The system matrix )(TA  and output matrix )(TB  
for discrete time servomotor system can be easily 
determined as follows [9]: 
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Therefore, the state-space representation of 
servomotor in discrete time space matrix could be 
expressed in this form: 
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4 Full-state Feedback Controller Design 
4.1 State feedback without integral control 
The concept of feed-backing all the state variables back 
to the input of the system through a suitable feedback 
matrix in the control strategy is known as the full-state 
variable feedback control technique. Using this 
approach, the desired location of the closed-loop 
eigenvalues (poles) of the system will be specified. 
Thus, the aim is to design a feedback controller that will 
move some or all of the open-loop poles of the measured 
system to the desired closed-loop pole location as 
specified. Hence, this approach is often known as the 
pole-placement control design. In this paper, pole-
placement technique via Bass and Gura’s formula is 
proposed. 
 In order to perform the pole-placement design 
technique, the system must be a “completely state 
controllable” system. In other words, it is possible to 
move all the of system’s open-loop poles by state 
variable feedback, to any arbitrary closed-loop locations. 
Therefore, before designing the controller, a test has to 
be performed on the system matrix where by checking 
its rank; it shall be equal to the number of the column 

vector. Then it can be concluded that the system is 
completely state controllable. Otherwise, another 
controller design has to be performed. 
 Fig.3 below shows detailed block diagram of system 
with state feedback control. 

 
Fig.3: Detailed block diagram of system with state feedback 
control 

 
The general state space equation for the block diagram 
in the Figure 4.1 above is derived as: 
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   (17) 
Bass and Gura’s formula to determine the state feedback 
gain matrix is given as follows [3]: 
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4.2 State feedback with integral control 
Normally, designing the state feedback controller by 
using only the pole-placement design will give one 
major disadvantage where large steady-state error will 
be introduced. Therefore, in order to compensate for this 
problem, an integral control is added where it will 
eliminate the steady-state error in the response to the 
step input. 
 Fig.4 shows the block diagram of the system with 
the integral control added into it. In the dashed box is the 
state feedback controller which is designed before. A 
feedback path from the output has been added to the 
error, e, which is fed forward to the controlled via an 
integrator. The main function of adding an integrator is 
to increase the system type thus reduces the previous 
finite steady-state error to zero. Therefore, a design for 
zero steady state error for a step input can be obtained. 

 
Fig.4: Detailed block diagram of system with state feedback 
and integral control. 
 
From the block diagram above, let the system matrix 
with integral control be given as [2]: 
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However, from Fig.4, realize that 
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Therefore, the final derivation for the system matrix 
with the integral control is as follows: 
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In order to implement the Bass and Gura’s formula to 
find the state feedback gain matrix for the state-space 

system with integral control, some equation 
modification has to be performed. 
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The controllability matrix, S’, can be obtained using the 
'F  and 'G  above. Now, the state feedback gain matrix 

can be obtained by rewriting equation (18) as follows: 
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and the gain integral can obtained is given as: 
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5 Simulation Analysis 
Fig.5 shows the continuous time hardware realization for 
the servomotor position control system with the: (a) state 
feedback controller without integral control (b) state 
feedback controller with integral control. Simulations 
are performed for both controllers’ structure where a 
unit step input (5-volts step) signal is used as the 
reference signal. To accomplish one of the design 
requirements, it is desired that the output signals to 
follow the given reference signals. Through simulation, 
the mathematical modeling for the servomotor is 
verified and the performances for both controllers’ 
structures are analyzed. 

 
Fig.5: State feedback controller (a) without integral control (b) 
with integral control 
5.1 Simulation results 
In order to analyze the performances of the proposed 
controllers, the system is simulated using 
MATLAB/SIMULINK. For this paper, simulation 
results for two cases study are presented for discussion. 
   
5.1.1 State feedback controller with integral control 
Case study 1: To obtain output response with 10% 
maximum percentage overshoot, 2 seconds of settling 
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time and 0 volt initial condition where state feedback 
controller with integral control is used.. 

 
Fig.6: Simulation result for case study 1 

The simulation result for case study 1 is shown in Fig.6, 
meanwhile Table 1 shows for its performance. From 
Table 1, it can be seen that the output response for 
simulation result of case study 1 is obtained with 
absolute discrepancy of 0.44% for percentage maximum 
overshoot and 1s for settling time. 
 

Table 1: Performance result for case study 1 
Performance Desired Actual |Discrepancy|
% maximum 

overshoot 
10 10.44 0.44 

Settling time 
(s) 

2 3 1 

%Steady-
state error 

0 0 0 

 
5.1.2 State feedback controller without integral 
control  
Case study 2: To obtain output response with 10% 
maximum percentage overshoot, 2 seconds of settling 
time and 0 volt initial condition where state feedback 
controller without integral control is used. 

 
Fig.7: Simulation result for case study 2 

  

The simulation result for case study 2 is shown in Fig.7, 
meanwhile Table 2 shows for its performance. From 
Table 2, it can be seen that the output response for 
simulation result of case study 2 is obtained with 
absolute discrepancy of 1.1% for percentage maximum 
overshoot and also 1s for settling time. However, the 
output response of case study 2 exhibits very large 
percentage steady state error.  
 

Table 2: Performance result for case study 2 
Performance Desired Actual |Discrepancy|
% maximum 

overshoot 
10 11.1 1.1 

Settling time 
(s) 

2 3 1 

%Steady-
state error 

0 1447.2 1447.2 

 
5.1.3 Comparison of State feedback controller with 
integral control (Case Study 1) and without integral 
control (Case Study 2) 

 
           (a)          (b) 
Fig.8: Comparison of simulation result for state feedback 
controller (a) with integral control (b) without integral control. 
  
Fig.8 shows the comparison of simulation results for 
case study 1 and 2. Meanwhile Fig.9 shows the 
comparison only on the output response. The 
performance comparison between these cases study is 
shown in Table 3 below: 
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Fig.9: Output response comparison for case study 1 and case 
study 2 
 
Table 3: Performance comparison of simulation results 
between case study 1 and case study 2. 
Performance Case 

Study 1 
Case 

Study 2 
|Discrepancy| 

% maximum 
overshoot 

10.44 11.1 0.66 

Settling time 
(s) 

3 3 0 

%Steady-state 
error 

0 1447.2 1447.2 

 
From Table 3, it can be concluded that the state 

feedback controller with integral control gives better 
performance in terms of percentage steady-state error. 
This is due to the fact that the state feedback controller 
without integral control produce very large percentage 
steady state error as can be observed in Fig.9. 
 
5.2 Discussion 
Two cases study are presented to study the 
performances of state-feedback controller with 
integral control and state feedback controller 
without integral control. Based on the simulation 
result, both give comparatively equal performance 
in terms of percentage maximum overshoot and 
settling time. However, if we were to compare in 
terms of percentage steady state error, based on 
Fig.9 and Table 3 it can be seen that the state 
feedback controller with integral control exhibits  
better performance compared to state feedback 
controller without the integral control.  
 
 
 
 

6 Conclusion 
The performances of State feedback controller with 
integral control and State feedback controller without 
integral control are studied in two cases study. For both 
cases, it is desired that the output response to obtain a 
certain percentage maximum overshoot with specified 
settling time and minimum percentage steady state error. 
Based on these criteria, it is analyzed that both state 
feedback controller with integral control and state 
feedback controller without integral control give equal 
performances in terms of maximum percentage 
overshoot and settling time but state feedback controller 
with integral control exhibits better performance in 
terms of percentage overshoot. As a conclusion, the state 
feedback controller with integral control is better than 
the state feedback controller without the integral control, 
thus state feedback controller with integral controller 
structures can be further be implemented using DDC via 
GUI. 
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