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Abstract: – The problem of analog system design for a minimal computer time has been formulated as the 

functional minimization problem of the control theory. The design process in this case is formulated as the 

controllable dynamic system. The optimal sequence of the control vector switch points was determined as a 

principal characteristic of the minimal-time system design algorithm. The conception of the Lyapunov function 

was proposed to analyze the behavior of design process. The special function that is a combination of the 

Lyapunov function and its time derivative was proposed to predict the design time of any strategy by means of 

the initial time interval analysis. 
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1 Introduction 
The problem of the computer time reduction of a 

large system design is one of the essential problems 

of the total quality design improvement. Besides the 

traditionally used ideas of sparse matrix techniques 

and decomposition techniques [1]-[5] some another 

ways were proposed to reduce the total computer 

design time [6]-[7]. The generalized approach for the 

analog system design on the basis of control theory 

formulation was elaborated in some previous works, 

for example [8]. This approach serves for the 

minimal-time design algorithm definition. On the 

other hand this approach gives the possibility to 

analyze with a great clearness the design process 

while moving along the trajectory curve into the 

design space. The main conception of this theory is 

the introduction of the special control functions, 

which, on the one hand generalize the design process 

and, on the other hand, they give the possibility to 

control design process to achieve the optimum of the 

design cost function for the minimal computer time. 

This possibility appears because practically an 

infinite number of the different design strategies that 

exist within the bounds of the theory. The different 

design strategies have the different operation number 

and executed computer time. On the bounds of this 

conception, the traditional design strategy is only a 

one representative of the enormous set of different 

design strategies. As shown in [8] the potential 

computer time gain that can be obtained by the new 

design problem formulation increases when the size 

and complexity of the system increase. However it is 

realized only in case when the algorithm for the 

optimal strategy of design is constructed.  

 

2 Problem Formulation 
The design process for any analog system design can 

be defined in discrete form [8] as the problem of the 

generalized cost function ( )UXF ,  minimization by 

means of the equation (1) with the constraints (2): 
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       ( ) ( )1 0− =u g Xj j
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       j M= 1 2, , . . . ,      

 

where NRX ∈ , ( )XXX ′′′= , , 
KRX ∈′  is the vector of 

the independent variables and the vector 
MRX ∈′′  is 

the vector of dependent variables ( MKN += ), 

( )Xg j  for all  j presents the system model, s is the 

iterations number, st is the iteration parameter, 

1Rt s ∈ , H≡H(X,U) is the direction of the 
generalized cost function ( )UXF ,  decreasing, U is 

the vector of the special control functions 
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( )U u u um= 1 2, , ... , , where uj ∈Ω; { }Ω= 0 1; . The 

generalized cost function ( )UXF ,  is defined as: 

 

      ( ) ( ) ( )UXXCUXF ,, ψ+=       (3) 

 

where ( )XC  is the non negative cost function of the 

design process, and ( )UX ,ψ  is the additional 

penalty function: 
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This formulation of the problem permits to 

redistribute the computer time expense between the 

solution of problem (2) and the optimization 

procedure (1) for the function ( )UXF , . The control 

vector U is the main tool for the redistribution 

process in this case. Practically an infinite number of 

the different design strategies are produced because 

the vector U depends on the optimization procedure 

current step. The problem of the optimal design 

strategy search is formulated now as the typical 

problem for the functional minimization of the 

control theory. The functional that needs to minimize 

is the total CPU time T of the design process. This 

functional depends directly on the operations number 

and on the design strategy that has been realized. The 

main difficulty of this definition is unknown optimal 

dependencies of all control functions u j
. 

 The continuous form of the problem definition is 

more adequate for the control theory application. This 

continuous form replaces Eq. (1) and can be defined 

by the next formula: 

 

( )dx

dt
f X U

i
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i N=01, ,...,  

 

This system together with equations (2), (3) and (4) 

composes the continuous form of the design process. 

The structural basis of different design strategies that 

correspond to the fixed control vector includes 2
M
 

design strategies. The functions of the right hand part 

of the system (5) are determined for example for the 

gradient method as: 
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ix  is  equal to ( )x t dti − ; ( )η i X  is the implicit 

function ( ( )x Xi i=η ) that is determined by (2). 

 The function ( )f X U0 ,  is determined as the 

necessary time for one-step integration of the system 

(5). This function depends on the concrete design 

strategy. The additional variable x 0
 is determined as 

the total computer time T for the system design. It is 

necessary to find the optimal behavior of the control 

functions u j  during the design process to minimize 

the total design computer time.  

 The idea of the system design problem 

formulation as the functional minimization problem 

of the control theory is not depend of the 

optimization method and can be embedded into any 

optimization procedures. In this paper the gradient 

method is used, nevertheless any optimization 

method can be used as shown in [8]. 

 Now the analog system design process is 

formulated as a dynamic controllable system. The 

time-optimal design process can be defined as the 

dynamic system with the minimal transition time in 

this case. So we need to find the special conditions to 

minimize the transition time for this dynamic system. 

 

3 Lyapunov function of design 

process 
On the basis of the analysis in previous section we 

can conclude that the minimal-time algorithm has 

one or some switch points in control vector where the 

switching is realize among different design strategies. 

As shown in [9] it is necessary to switch the control 

vector from like modified traditional design strategy 

to like traditional design strategy with an additional 

adjusting. Some principal features of the time-

optimal algorithm were determined previously. These 

are: 1) an additional acceleration effect that appeared 

under special circumstances [9]; 2) the start point 

special selection outside the separate hyper-surface to 

guarantee the acceleration effect, at least one 

negative component of the start value of the vector X 

is can be recommended for this; 3) an optimal 

structure of the control vector with the necessary 
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switch points. The two first problems were discussed 

in [9-10]. 

 The main problem of the time-optimal algorithm 

construction is unknown optimal sequence of the 

switch points during the design process. We need to 

define a special criterion that permits to realize the 

optimal or quasi-optimal algorithm by means of the 

optimal switch points searching. A Lyapunov 

function of dynamic system serves as a very 

informative object to any system analysis in the 

control theory. We suppose that the Lyapunov 

function can be used for the revelation of the optimal 

algorithm structure. First of all we can compare the 

behavior of the different design strategies by means 

of the Lyapunov function analysis.  

 There is a freedom of the Lyapunov function 

choice because of a non-unique form of this function. 

Let us define the Lyapunov function of the design 

process (2)-(6) by the following expression: 

 

 

       ( ) ( )[ ]rUXFUXV ,, =       (7) 

 

       ( ) ( )
∑ 









∂
∂

=
i ix

UXF
UXV

2

,
,       (8) 

 

 

where F(X,U) is the generalized cost function of the 

design process. The formula (7) can be used when 

the general cost function is non-negative and has zero 

value at the stationary point a. Other formula can be 

used always because all derivatives 
ixF ∂∂ /  are equal 

to zero in the stationary point a. 

  We can define now the design process as a 

transition process for controllable dynamic system 

that can provide the stationary point (optimal point of 

the design procedure) during some time. The 

problem of the time-optimal design algorithm 

construction can be formulated now as the problem 

of the transition process searching with the minimal 

transition time. There is a well-known idea [11]-[12] 

to minimize the time of transition process by means 

of the special choice of the right hand part of the 

principal system of equations, in our case these are 

the functions ( )UXf i , . It is necessary to change the 

functions ( )UXf i ,  by means of the control vector U 

election to obtain the maximum speed of the 

Lyapunov function decreasing (the maximum 

absolute value of the Lyapunov function time 

derivative dtdVV /=
•

). Normally the time derivative 

of Lyapunov function is non-positive for the stable 

processes. However we define more informative 

function as a relatively time derivative of the 

Lyapunov function: VVW /
•

= . In this case we can 

compare the different design strategies by means of 

the function W(t) behavior and we can search the 

optimal position for the control vector switch points. 

 

4 Numerical results 
All examples were analyzed for the continuous form 

of the optimization procedure (5). Functions V(t) and 

W(t) were the main objects of the analysis and its 

behavior has been analyzed for all strategies that 

compose the structural basis of the general design 

methodology. The behavior of the functions V(t) and 

W(t) for the network of Fig. 1 is shown in Fig. 2. The 

nonlinear element has the following dependency: 

( )22101 VVbyyn −+= . The vector X includes five 

components: 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 14 Vx = , 25 Vx = . 

The model of this network (2) includes two equations 

(M=2) and the optimization procedure (5) includes 

five equations. The cost function ( )C X  has been 

determined as the sum of the squared differences 

between beforehand-defined values and current 

values of the nodal voltages for two nodes with 

additional inequalities for some circuit elements. 

 

 
 

Figure 1.  Two-node nonlinear passive network. 

  

  
 

Figure 2.  Behavior of the functions V(t) and W(t) for 

four design strategies during the design process for 

network in Fig.1. 
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The network in Fig. 1 is characterized by two 

dependent parameters (two nodal voltages) and the 

control vector includes two control functions: 

U= ( )21 ,uu . The structural basis of design strategies 

includes four design strategies: 00, 01, 10, and 11. 

The Lyapunov function was calculated by formula 

(8) for r=0.5. As we can see from Fig. 2 the functions 

V(t) and W(t)  can  give  an  exhaustive   explanation   

for   the design process characteristics. First of all we 

can conclude that the speed of decreasing of the   

Lyapunov function is inversely proportional to the 

design time. The minimal value of the Lyapunov 

function that corresponds to the maximum precision 

is approximately equal for all strategies and exactly 

is equal to 8.710-6, 1.710-5, 1.310-5, 2.010-5 for the 

strategies 00, 01, 10, 11 accordingly. We can see 

from Fig. 2 that after the minimal value decision the 

Lyapunov function increases a little. This small 

increasing corresponds to the small positive value of 

the Lyapunov function time derivative. Later on this 

derivative aspire to zero and the Lyapunov function 

has a permanent value. 

 The relative design time for four design strategies 

is equal to 1, 0.44, 0.78 and 0.3 for the strategies 00, 

01, 10, 11 accordingly. This time was defined for the 

time point with the minimal value of the function V. 

As we can see from Fig. 2 a large absolute value of 

the function W(t) corresponds to a more rapid 

decreasing of the function V(t) and a smaller 

computer design time. 

 Another passive nonlinear network with three 

nodes (Fig. 3) was analyzed below. 

 

 
 

Figure 3.  Three-node nonlinear passive network. 

 
The nonlinear elements have been defined by 

following dependencies: ( )221111 VVbay nnn −⋅+= , 

( )232222 VVbay nnn −⋅+= . The vector X includes seven 

components: 1

2

1 yx = , 2

2

2 yx = , 3

2

3 yx = , 4

2

4 yx = , 15 Vx = , 

26 Vx = , 37 Vx = . The model of this network (2) 

includes three equations (M=3) and the optimization 

procedure (5) includes seven equations. This network 

is characterized by three dependent parameters and 

the control vector includes three control functions: 

U= ( )321 ,, uuu . The behavior of the functions V(t) 

and W(t) for this network is shown in Fig. 4. 

 

  
 
Figure 4.  Behavior of the functions V(t) and W(t) for 

eight design strategies during the design process for 

network in Fig.3. 

   
The structural basis of design strategies includes 

eight design strategies: 000, 001, 010, 011, 100, 101, 

110 and 111. As for previous example, for the 

network in Fig.3 we also can conclude that the speed 

of decreasing of the Lyapunov function is inversely 

proportional to the design time. The minimal value of 

the Lyapunov function that corresponds to the 

maximum precision is in the limits from 1.210-5 for 

strategy 000 to 5.910-5 for strategy 111. We can see 

from Fig. 4 that the Lyapunov function increases a 

little for some strategies after the minimal value 

decision. The relative design time for all design 

strategies is equal to 1, 0.886, 0.569, 0.091, 0.129, 

0.25, 0.131 and 0.105 for the strategies 000, 001, 

010, 011, 100, 101, 110 and 111 accordingly. This 

time was defined for the time point with the minimal 

value of the function V. We can see from Fig. 4 that a 

large absolute value of the function W(t) corresponds 

to a more rapid decreasing of the function V(t) and a 

smaller computer design time. The strategies 011, 

100, 110 and 111 have a large value of the function 

W(t) during all design process till a small value of the 

function V(t). That is why these strategies have a 

relative little computer time. 

 Next example corresponds to the active network in 

Fig.5. The vector X includes six components: 1

2

1 yx = , 

2

2

2 yx = , 3

2

3 yx = , 14 Vx = , 25 Vx = , 66 Vx = . The model 

of this network (2)  includes  three  equations  ( M=3 ) 

and the optimization procedure (5) includes six 

equations. The total structural basis contains eight 

different  strategies.  The   control   vector   has   three 
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Figure 5.  Three-node nonlinear active network. 

 

components in this case and the structural basis 

consists of eight design strategies. The control vector 

includes three control functions: U= ( )321 ,, uuu . The 

Ebers-Moll static model of the transistor has been 

used. 

 As for the previous examples, Fig. 6 shows the 

behavior of the functions V(t) and W(t) for a time 

interval when the majority of the design strategies are 

finished.  

 

 

 
 

 

Figure 6.  Behavior of the functions V(t) and W(t) for 

different design strategies during the design process 

for network in Fig.5.   

 
The strategies with control vector 101 and 111 have 

extremely large value of the relative derivative W(t) 

from the beginning of the design process and that is 

why the Lyapunov function is decreases very rapidly.  

The relative design time is very small for two these 

strategies and it is equal to 0.00057 and 0.00018 

accordingly. The strategies with the control vector 

001, 011 and 100 have the sufficient level of the 

function W during the analyzed interval and the 

relative design time is equal to 0.0054, 0.0061 and 

0.0114 accordingly. Nevertheless three other design 

strategies with the control vector 000, 010 and 110 

are not finished during the presented interval. It 

occurs because the function W for these strategies 

decreases rapidly while the Lyapunov function had a 

relatively large value. After this the Lyapunov 

function decreases very slowly and the relative 

design time is equal to 1.0, 0.127 and 0.027 

accordingly.  

 Other example corresponds to the network in 

Fig.7. 

 

 

 
Figure 7.  Five-node nonlinear active network. 

 
 This network is characterized by five dependent 

parameters and the control vector includes five 

control functions: U=(u u u u u1 2 3 4 5, , , , ). The 

structural basis consists of 32 design strategies. Some 

graphs of all the structural basis strategies are 

presented in Fig. 8. These graphs correspond to a 

time interval when the majority of the design 

strategies are finished. The strategies 6, 7, 8 and 9 

have a large value of the relative derivative W from 

the initial of the design process.  

 

 

 
 

 

Figure 8.  Behavior of the functions V(t) and W(t) for 

some design strategies during the design process for 

circuit in Fig. 7. 
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This property provides extremely fast decreasing of 

the Lyapunov function. The design time for these 

design strategies is presented in Table 1. 

 
Table 1. Some strategies of the structural basis. 

 

 

 

We can see that just these strategies 6, 7, 8 and 9 

have the design time lesser than other strategies. The 

strategies 4, 5 and 10 have an average value of the 

function W in the initial part of the design process 

and these strategies have an average value of the 

design time. At last, the strategies 1, 2 and 3 have a 

large design time and just these strategies have a very 

fast decreasing of the function W during initial part of 

the design process when the Lyapunov function had a 

relatively large value. After this the Lyapunov 

function decreases very slowly and the design time 

for these strategies is large. 

 So, the main feature of the analyzed examples can 

be formulated by the next manner: the behavior of 

the Lyapunov function V and the relative time 

derivative W surely determine the design time. It 

means that it is possible be guided by means of these 

functions to predict the computer design time for any 

design strategy. We could analyzed the initial time 

interval of the functions V(t) and W(t) behavior for 

the different strategies and by this analysis we can  

predict  the strategies that have a minimal computer 

design time. 

 

5 Conclusion 
The problem of the minimal-time design algorithm 

construction can be solved adequately on the basis of 

the control theory. The design process in this case is 

formulated as the controllable dynamic system. The 

Lyapunov function and its time derivative include 

the sufficient information to select more perspective 

design strategies from infinite set of the different 

design strategies that exist into the general design 

methodology. The special function W(t) was 

proposed to compare the different design strategies 

and to predict the strategy that has a minimal design 

time. The successful solution of this problem permits 

to construct the minimal-time system design 

algorithm. 
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N Control Iterations Total

vector number design

   time (sec)

1  (0 0 0 0 0) 165962 299.56

2  (0 0 0 0 1) 337487 737.55

3  (0 0 1 0 0) 44118 68.87

4  (0 0 1 0 1) 14941 19.06

5  (0 0 1 1 1) 21971 22.03

6  (0 1 1 0 1) 4544 4.56

7  (1 0 1 0 1) 2485 1.65

8  (1 0 1 1 1) 7106 3.57

9  (1 1 1 0 1) 2668 1.32

10  (1 1 1 1 1) 79330 10.11
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