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Abstract: - In this paper, the formulation of a new explicit group method in solving the two-dimensional Poisson 
equation is presented. The method is derived from a skewed (rotated) five-point finite difference discretisation 
which results in a reduced system with lower computational complexity compared to schemes derived from the 
standard five-point difference approximation.  The details of the algorithm will be discussed.  Numerical 
experimentations will be conducted and comparison with the common existing schemes is reported. 
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1 Introduction 
Fast computational methods for solving partial 
differential equations using finite difference schemes 
derived from skewed (rotated) difference operators 
have been extensively investigated over the years 
([1], [2], [3], [4], [5], [10], [11], [12]). The methods 
have several advantages such as they are explicit in 
nature so that parallelism is favorable and require 
lesser execution timings than the schemes derived 
from the standard five-point difference operators 
without jeorpadising the order of accuracies. The use 
of this skewed difference formula [8] leads to 
schemes with lower computational complexities 
since the iterative procedure need only involve 
nodes on half of the total grid points in the solution 
domain and thus a reduced system of linear 
equations is attained. In [1] in particular, a group 
iterative scheme, the Explicit Decoupled Group 
(EDG) scheme, was developed by Abdullah (1991) 
as a more efficient Poisson solver on rotated grids by 
using small fixed size group strategy which was 
shown to be more economical computationally than 
the Explicit Group (EG) scheme due to Yousif and 
Evans [9]. In 2000, Othman and Abdullah [7] 
modified the formulation of the EG method by 
altering the ordering of grid points taken in the 
iterative process to come up with the modified four-
point EG where this method (MEG) was shown to 
be more superior in timings than both the original 

EG and EDG methods. In this paper, we extend the 
idea of the modification to the EDG method to 
investigate whether this strategy is able to produce a 
more improved scheme in solving the two-
dimensional Poisson equation.  

Section 2 gives an overview of the explicit 
group methods under study. Section 3 describes the 
formulation of the modified EDG method followed 
by the computational complexity in Section 4.  The 
numerical experiments and results are presented in 
Section 5.  The conclusion is given in Section 6.  
 
 
2 The Group Iterative Methods  
Consider the two dimensional Poisson equation  

,),(    ),,( Ω∈=+ yxyxfuu yyxx  (1) 
with a Dirichlet boundary condition. on ∂ , where 

 is the boundary of the unit square solution 
domain [0≤x,y≤1]. Let Ω  be discretized uniformly 
in both x and y directions with a mesh size h = 1/n, 
where n is an arbitrary positive integer. The 
solutions of (n-1)

Ω
Ω∂

2 internal mesh points (x,y) can be 
approximated by various finite difference schemes. 
Two such approximations are the standard five-point 
difference formula 

jijijijijiji fhuuuuu ,
2

1,1,,1,1,4 −=−−−− −+−+  (2) 
and the rotated five-point difference formula 

jijijijijiji fhuuuuu ,
2

1,11,11,11,1, 24 −=−−−− −++−−−++  (3) 
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Eq. (3) is obtained by rotating the i-plane axis and 
the j-plane axis clockwise by 45o [1]. Applying Eq. 
(2) to groups of four points will result in the 
following (4x4) system 
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which can be easily inverted to produce a four-point 
EG equation [9] 
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Similarly, applying Eq. (3) to groups of four points 
of the solution domain will result in a (4x4) system 
of equations 
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which can be written in a decoupled system of (2x2) 
equations whose explicit forms [1] are given by 
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and 
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From Fig. 1, it may be observed that the evaluation 
of Eq. (7) involves points of type  (including the 
ungrouped  points) only, while Eq. (8) can be 
evaluated involving points of type  only. Thus, the 
calculations of Eq. (7) and (8) can be carried out 
independently which may save the execution time by 
nearly half if the iteration is carried out on only one 
type of points; either the type  or . Fig. 1 shows 
the various types of points involved if iteration is 
carried out on  points (grouped) using Eq. (7) and 
on  points (ungrouped) using Eq. (3) for n=14. 
After convergence is achieved, the solutions at the 
other remaining half of the points ( ) are computed 
directly once using the standard five-point formula 
of Eq. (2). By this way, the execution time of this 
EDG method will be reduced to half of the execution 
time of EG method. 
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Fig. 1. Type of points in EDG method for n=14 

 
 
3 Modified EDG Method  
We now modify the EDG method described in the 
previous section by considering points at grid size of 
2h = 2/n. Applying centered difference equation on 
these 2h spaced points results in the following 
standard five-point formula (with spacing 2h) 

jijijijijiji fhuuuuu ,
2

2,2,,2,2, 44 −=−−−− −+−+  (9) 
Rotating the x-y axis clockwise 45o and applying 
centered difference equation on these points will 
result in the following rotated five-point difference 
formula (with spacing 2h)  

jijijijijiji fhuuuuu ,
2

2,22,22,22,2, 84 −=−−−− −++−−−++  (10) 
 
Now we apply Eq. (10) to groups of four points as 
shown in Fig. 2 and produce the following (4x4) 
system of equations 
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which can be inverted and rewritten in explicit forms 
of a decoupled system of (2x2) equations as 
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and 
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Similar to the original EDG method, the evaluation 
of Eq. (12) and Eq. (13) can be performed 
independently. Fig. 3 shows the discretization points 
of a unit square domain with n=14 and the various 
types of points involved. It is obvious that the 
evaluation of Eq. (12) involves only points of type  
and Eq. (13) only points of type . In this paper we 
solve points of type  iteratively using Eq. (12) until 
convergence after which the points of type  is 
computed directly once using the standard 2h spaced 
five-point formula of Eq. (9). The remaining in-
between points of type  are also computed directly 
once using the rotated five-point difference formula 
of Eq. (3), and followed by points of type  using 
the standard five-point difference formula of Eq. (2). 
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Fig. 2. Group of four points with 2h spacing  
 
We define the four point MEDG method with 
successive over-relaxation (SOR) iterative scheme 
as follows. 
 
1. Divide the solution domain into five types of 

points as shown in Fig. 3 (for the case n=14). 
2. Group all the 2h spaced   and  points into 

four-point groups. 
3. Iterate the intermediate solution of points  in 

each group using 
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and implement the relaxation scheme  
 

4. If solution converged, go to step 5. Otherwise, 
repeat the iteration step 3. 

5. Evaluate the remaining points in this sequence: 
a. points of type   
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Fig. 3. Type of points in MEDG methods for n=14 
 
 
4 Computational Complexity  
We develop here the computational complexity for 
the MEDG method based on the algorithm defined 
in the previous section. Likewise, the computational 
complexity for other explicit group methods (EG, 
EDG and MEG) are also derived based on the 
similar iterative scheme. First we need to derive the 
number of various points involved in the whole 
solution process. Assume the solution domain is 
discretized with even integer n, then the number of 
internal mesh points is given by m2 where m=n-1. 
There are two main type of internal mesh points 
namely, iterative points which are points involved in 
the iteration process, and direct points which 
solutions are computed directly from a specific 
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difference formula once after the iteration process 
converged. Table 1 lists the number of points for the 
various internal mesh points for the proposed 
MEDG method as well as for the other existing 
explicit group methods.  

Next we estimate the computational complexity 
of MEDG method in terms of arithmetic operations 
performed in an iteration (excluding the convergence 
test). From Eq. (12) we obtain 
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Thus, the updated equation for an individual point, 
say uij , is given by  

[ 21, 4
15
1~ bbu ji += ]  (16) 

and the SOR iterative scheme is given by 
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Since the update is done in groups of two points, 
the values of b1 and b2 calculated only once before 
computing those two points of u. This results in 6 

additions (adds) and 3 multiplications (mults) for a 
single point, provided the constants 1/15 and 8h2 fij 
are computed and stored beforehand. Similarly it can 
be shown that the computational cost of a single 
iterative grouped point in EG and MEG methods is 7 
adds+4 mults, and the EDG method 6 adds+3 mults. 
Further details of the complexity analysis for the EG 
and EDG methods can be found in [6]. 

The cost of computing an iterative ungrouped 
point in EG and EDG methods using either standard 
or rotated five-point difference formula is 6 adds+2 
mults while the direct solution after convergence 
requires 4 adds+1 mult per point. Hence, the number 
of arithmetic operations required in an iteration and 
in the direct solution after convergence for the EG, 
EDG, MEG and MEDG methods in term of m can 
be derived and this is given in Table 2. 

It is clear from Table 2 that the computational 
cost of MEDG is the least among the four-point 
explicit groups methods. For large m, it is 
approximately 10%, 25% and 40% of the 
computational cost for EG, EDG and MEG methods 
respectively. 

 
Table 1. Number of various mesh points in the explicit group methods 

Number of points Point types 
EG EDG MEG MEDG 

Iterative grouped points (m-1)2 (m-1)2/2 (m-1)2/4 (m-1)2/8 
Iterative ungrouped points 2m-1 m - - 

Total iterative points, ip m2 (m2+1)/2 (m-1)2/4 (m-1)2/8 
Direct 2h spaced ‘standard’ points  - - - (m-1)2/8 
Direct h spaced ‘rotated’ points - - (m+1)2/4 (m+1)2/4 
Direct h spaced ‘standard’ points - (m2-1)/2 (m2-1)/2 (m2-1)/2 

Total direct points, dp - (m2-1)/2 (3m2+2m-1)/4 (7m2+2m-1)/8 

Total internal points, ip+dp m2 m2 m2 m2 

 
 

Table 2. The computing cost for the explicit group methods.  

 Per Iteration  After convergence 
Method 

 adds mults  adds mults 
EG  7(m-1)2 + 6(2m-1) 4(m-1)2 + 2(2m-1)  - - 
EDG  3(m-1)2 + 6m 3(m-1)2/2+ 2m  2(m2-1) (m2-1)/2 
MEG  7(m-1)2/4 (m-1)2  3m2+2m-1 (3m2+2m-1)/4 
MEDG  3(m-1)2/4 3(m-1)2/8  (7m2+2m-1)/2 (7m2+2m-1)/8 
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5 Experimental Results  
In order to compare the proposed method with the 
other explicit group methods, experiments were 
carried out on a PC with Pentium 4 2.80 GHz, 512 
MB RAM running Windows XP Pro using Borland 
C++. All four methods were run to solve the 
following model problem  
 

]1,0[]1,0[),(,)( 22
2

2

2

2

×=Ω∈+=
∂
∂+
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∂ yxeyx

y
u

x
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with Dirichlet boundary conditions satisfying the 
exact solution u . Ω∂∈= ),(,),( yxeyx xy

 
The theoretical optimum relaxation factor ωo for 

implementing the group SOR iterative scheme can 
be computed from the formula 
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where ρ(B) is the spectral radius of the group 
Jacobian iterative matrix which can be estimated for 
EG, EDG and MEG methods as 1 , 22hπ− 222 hπ−1  
and  respectively ([1], [7], [9]). For the 
MEDG method, the spectral radius can be estimated 
as  

2241 hπ−

22241)( hB πρ −≈ . (20) 
 

The theoretical number of iteration to converge with 
the error tolerance ε can then be estimated as  

)1ln(
ln

−
≈

o
o ω

εκ  (21) 

 
All methods were run with several mesh sizes of 194, 
242 and 482. The experimental values of relaxation 
factor ωe for the various mesh sizes were obtained 
within ±0.0001 by choosing the ones that resulted in 
the least number of iterations. The convergence 
criteria used was the l∞ norm with error tolerance 
ε≤10-5. The results are given in Table 3 together with 
the computed theoretical values. 

It is clearly seen from Table 3 that the MEDG 
method is the fastest method among the four explicit 
group methods. The timings obtained as shown in 
Table 3 and Fig. 4 show that the execution times of 
MEDG is only about 10% and 15% of those of EG 
and EDG methods respectively, while MEG is about 
14% and 22% of EG and EDG execution times. This 
shows that MEDG outperforms MEG in terms of 

computing time saving. Furthermore, MEDG also 
exhibits better accuracy in all cases observed.  
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Fig. 4. Execution times (in secs.) on various mesh sizes  

 
6 Conclusion  
We have presented a preliminary work on the 
MEDG method as a faster Poisson solver compared 
to the existing explicit group methods derived from 
the standard and rotated five-point formulas. The 
theoretical computational complexity analysis of the 
MEDG method is found to be in agreement with the 
experimental execution time obtained. It is also 
observed that the accuracy of the proposed method is 
maintained as good as the existing schemes even 
though the domain grid size for the iterative solution 
is doubled. While the methods presented here are 
sequential, the parallel versions are still under 
investigation and will be reported soon. 
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Table 3. Theoretical and experimental results of the EG, EDG, MEG and MEDG methods  
with red-black ordering strategy 

   Theoretical  Experimental 
Sizes Methods  ρ ωo κo  ωe κe MaxError AveError ExecTime 
194 EG  0.9997 1.9552 252  1.9553 268 1.18E-4 4.98E-5 2.3600 
194 EDG  0.9996 1.9470 212  1.9483 268 1.28E-4 4.81E-5 1.4060 
194 MEG  0.9990 1.9124 126  1.9125 139 8.11E-5 3.47E-5 0.3120 
194 MEDG  0.9985 1.8967 106  1.9003 136 6.94E-5 2.28E-5 0.2190 
242 EG  0.9998 1.9639 314  1.9636 333 2.03E-4 8.33E-5 4.7960 
242 EDG  0.9998 1.9573 264  1.9585 328 1.42E-4 5.39E-5 3.0470 
242 MEG  0.9993 1.9292 157  1.9286 173 1.26E-4 5.33E-5 0.6400 
242 MEDG  0.9990 1.9163 132  1.9209 165 4.67E-5 1.52E-5 0.4060 
386 EG  0.9999 1.9772 501  1.9769 522 2.97E-4 1.19E-4 21.4070 
386 EDG  0.9999 1.9730 421  1.9735 511 2.38E-4 9.17E-5 13.9060 
386 MEG  0.9997 1.9550 251  1.9543 271 2.01E-4 8.37E-5 3.1720 
386 MEDG   0.9996 1.9467 211   1.9488 261 1.04E-4 3.87E-5 2.2190 
482 EG  1.0000 1.9817 625  1.9812 649 4.63E-4 1.86E-4 42.1720 
482 EDG  0.9999 1.9783 526  1.9783 637 3.71E-4 1.44E-4 28.3750 
482 MEG  0.9998 1.9638 313  1.9630 335 2.77E-4 1.13E-4 6.4380 
482 MEDG  0.9998 1.9571 263  1.9589 321 1.14E-4 4.28E-5 4.4530 
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