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Abstract: - A theory of sound waves propagation in porous media that includes the nonlinear effects of the 
Forchheimer type with the nonzero radial velocity effects is laid out by using variational solutions. It is shown 
that the main parameters governing the propagation of sound waves are the shear wave number μωρ /Rs = , 
the reduced frequency number awRk = , the porosityε , the Darcy number KRDa = and the Forchheimer 
number 

Fs CC 2* =  . The manner in which the flow influences the attenuation and the phase velocities of the 
forward and backward propagating isentropic acoustic waves is deduced. It is found that the increasing of 
Darcy number and Forchheimer number increased wave’s attenuations and phase velocities for both forward 
and backward sound waves, while the increasing of porosity decreased attenuation and phase velocities. The 
effect of increasing reduced frequency is found to increase the attenuation of the forward waves and decrease 
attenuation and phase velocities of the forward and backward sound waves. The effect of the steady flow is 
found to decrease the attenuation and phase velocities for forward sound waves and enhance them for the 
backward sound waves, respectively. 
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1   Introduction 
The coustic problem finds its application in many 
different situations. For example if the acoustic 
improvements are restricted to interior spaces 
usually mineral wools or open pore foams can be 
used to solve the problem, for outdoor problems for 
instant acoustic noise barriers against traffic noise, 
the absorption provided by granular materials such 
as porous concrete or similar materials, as they 
behave better with bad weather and other 
atmospheric phenomena. 
In porous materials the absorption process of the 
acoustic wave takes place through viscosity and 
thermal losses of the acoustic energy inside the 
micro tubes forming the material. The problem of a 
propagation of sound waves in fluids contained in a 
plain medium is a classical one, to which famous 
names are connected like Helmholtz [1], Kirchhoff 
[2] and Rayleigh [3]. A variational treatment of the 
problem of sound transmission in narrow tubes is 
described by Cummings [4] as an alternative to the 
more usual analytical procedure which is limited to 
mathematically tractable geometries. A first 
approximation to the effects of mean flow on sound 
propagation through cylindrical capillary tubes is 
achieved by Peat [5].  A sound transmission in 
narrow pipes with superimposed uniform mean 
flow and acoustic modeling of automobile catalytic 
converters is done by Dokumaci [6]. A numerical 
study on the propagation of sound through capillary 

tubes with mean flow is achieved also by Jeong and 
Ih [7] and finally an approximate dispersion 
equation for sound waves in a narrow pipe with 
ambient gradients is done by Dokumaci [8].  

The problem of sound waves propagation in 
a stationary or flowing fluid in a porous medium is 
not addressed yet. An attempt is made in this article 
to develop a simplified nonlinear theory that 
predicts the propagation characteristics of a 
stationary or flowing fluid in saturated porous 
media. This theory is an extension of the classical 
plain medium theory, using a modification to 
Darcy’s law due the Forchheimer effects and 
assuming nonzero radial velocity effects. Analytical 
expressions for the propagation constant are 
obtained from variational solutions. Comparison 
with previous works in the limit of plain medium 
shows an excellent agreement. 

2   Problem Formulation 
Consider a rigid tube filled with a saturated 

porous material, the fluid is assumed to be a 
stationary or movable inside the tube. The x-
coordinate is measured along the tube and the r-
coordinate is measured normal to the axial direction. 
Under the boundary layer approximations the basic 
equations which govern acoustic wave propagation 
in a rigid tube filled with a porous media are the 
continuity and momentum equations: 
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Where ** ,vu are the velocity components in the axial 
and normal directions; respectively. **and pρ are the 
fluid density and pressure, μ  is the absolute 
viscosity and K is the permeability of the porous 
media and ε  is the porosity of the porous medium. 
Since one is dealing only not with capillary tubes the 
radial velocity might be expected to be not 
negligible. This effect of this is to couple the 
continuity equation (4) and the momentum equation 
(5). Next, it is assumed that the flow through the 
capillary duct is a superposition of a fully developed 
laminar, incompressible, axial steady flow and a 
small harmonic acoustic disturbance of frequencyω . 
The steady flow is taken to have constant density ρ  
and a speed of sound a such that the fluid variables 
can be expanded in the form: 

( )*

)(1* tiee ωξΓηαρρρ += ( )*

)()(0
* tieeuMau ωξΓηαη += , 

*

)(* tieevav ωξΓηα= , ( )*

)()()( 0
2* tieeppap ωξΓηαξγρ += (4-7) 

Where 1<<α  and γ  is the ratio of specific heats. It 
is seen that the steady flow variables 0p  and Mach 
number 0M  together with acoustic variables 

pvu and,,ρ are dimensionless. Now introduce the 
following variables in the transformations: 

ax /*ωξ =      Rr /*=η          (8) 
R is the radius of the capillary duct. The axial 
acoustic wave motion has been assumed to have 
complex propagation constant Γ which can be 
expanded as: 

ΓΓΓ ′′+′= i  (9) 
Where Γ ′ represents the wave attenuation per unit 
distance and Γ ′′ represents the phase shift over the 
same distance. The assumed forms of the variables, 
equations (4-7) are substituted into the governing 
equations (1) and (2)-(3) and terms of similar order 
in α equated. It is found that for zeroth order, the 
steady flow solution, the equations of continuity and 
radial momentum are identically satisfied, while the 
axial momentum equation (6) becomes:  
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Here μωρ /Rs = is the shear wave number, 
aRk /ω= is the reduced frequency parameter, 
KRDa /= is the Darcy number and 

FC  is the 
Forchheimer number. This is the classical equation 
of Hagen-Poiseuilli flow, the solution of which, with 

no-slip boundary conditions, gives a parabolic 
velocity profile:  
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Where M is the mean Mach number of the steady 
flow. The linearized acoustic equations follow from 
equating terms of first order in α in the governing 
equations, and are: 
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Where awRkRKDa /and/ ==  is the Darcy number 
and the Forchheimer number respectively. The case 
of 0or1 == Daε corresponds to the plain medium 
without the presence of the solid matrix and any 
values of 0or10 ><< Daε  represent a porous 
medium with different pore spaces. For the case of 

0and1 == Daε , the governing equations (12) and 
(13) reduces to those obtained by Peat [5] for the 
case of a pure plain medium. In the limit of zero 
steady flow, 0=M , these equations are found to 
reduce to those for the reduced frequency solution of 
Tijdeman [9]. It will be assumed hat the tubes are 
rigid which implies the no-slip boundary condition 
of the fluid velocity at wall: 

1at0 == ηu        (14) 
The solution of equations (12)-(13) is 

greatly simplified if one assumes that the acoustic 
disturbances occur isentropically, since then: 

ργ=p     (15) 

3. Variational Solutions 
The continuity equation (12), with the assumption of 
isentropic disturbances and the given form of the 
trial solution of the axial velocity, equations (18) and 
(19),and Integrating this expression and using the 
boundary condition that 0when0 == ηv gives: 
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This expression can now be substituted into the full 
momentum equation (13) to give: 
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Equation (17) corresponds to the minimum of the 
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Now the assumed form of trial solution for u, 
equation (18), is substituted into this expression and 
the minimum is found by setting: 

0=∂∂ CG                 (19) 

Which result in an expression for the constant C ; 
namely, 
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 Substitution of the same trial solution for u into 
equation (16) and use of boundary condition 

1at0 == ηv leads to a second expression of the 
propagation constant, 

)(2 Γ
εγΓ
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Equations (20) and (21) enable C to be eliminated 
which results in an expression for the propagation 
constant: 
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With a solution of the propagation constants of the 
form: 
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Note that when 0or1 == Daε the propagation 
constant, equation (28) is reduced to those obtained 
by Peat [15] for the case of a pure plain medium. It 

is important also to note that the M will reflect the 
effect of steady flow on the acoustic problem under 
consideration; the case of 0=M corresponds to the 
absence of mean flow velocity and to the acoustic 
problem in a stationary porous media. 
 
4. Results and Discussion 
Comparison of variational solution with exact 
solution as given by Peat [5] in the limits of plain 
medium for 0and1 == Daε  are shown in table. 1. 
Figure.1 is a plot of the modulus of wave attenuation 
per unit distance, Γ ′ and phase shift Γ ′′ for varying 
shear wave number and Mach numbers 

3.0,2.0,1.0,0=M  and for 8.0,1.0,10 * === εsCDa  
π15.0and =k . It is clear that as the Mach number is 

increased the attenuation is decreased and the phase 
velocities are increased for the forward waves, while 
as the Mach number is increased both the attenuation 
and phase velocities are increased for the backward 
sound waves; this is due to collision effects of the 
forward sound waves and favorable vertical velocity 
effects in more damping of the backward sound 
waves. Figure .2 shows the effect of increasing 
Darcy numbers 10,5,1,1.0,0=Da for 1.0,1.0 * == sCM  

πε 15.0and8.0, == k , it is clear that as the Darcy 
number is increased the attenuation and phase 
velocities for both the forward and backward sound 
waves; this is due to favorable effects of the solid 
matrix in damping sound waves. Figure .3 shows the 
effect of porosity 9.0,8.0,7.0,6.0,5.0=ε on 
attenuation and phase velocities for selected values 
of 1.0,10 * == sCDa  π15.0and1.0 == kM , it is found 
that the increasing of porosity decreases the 
attenuation and phase velocities for both the forward 
and backward waves; this is due to the small effect 
of the solid matrix as moving toward the plain media 
limit. Figure .4 shows the effect of Forchheiemr term 

10,5,1,1.0* =sC on attenuation and phase velocities for 
πε 15.0and1.0,8.0,10 ==== kMDa , it is found that 

as the Forchheimer term is increased the attenuation 
and phase velocities are increased for the forward 
and backward sound waves; this is due to favorable 
damping effects of the fluid inside the large used 
pores of the solid matrix. Finally figure. 5 shows the 
effect of increasing πππ 1.0,5.0,05.0=k  

πππ 5.0,3.0,2.0, on the attenuation and phase 
velocities for 3.0,8.0,10 === MDa ε  10and * =sC , it 
is found that as the reduced frequency is increased 
the attenuation is increased and the phase velocities 
are decreased for the forward sound waves and both 
the attenuation and phase velocities are decreased 
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for the backward sound waves; this is due to higher 
frequency of the impacted sound waves on the solid 
matrix, it is important to note that the same effect is 
noticed for sound waves propagated in a plain 
medium. 

5.   Conclusion 
1- It is found that the effect of increasing Darcy 
number or Forchheimer number is to increase the 
attenuation and phase velocities for both forward 
and backward sound waves; this is due to favorable 
role of solid matrix in damping sound waves. 
2- It is found that the effect of increasing porosity or 
reduced frequency parameter is to decrease 
attenuation and phase velocities for both forward 
and backward sound waves; this is due to absence of 
favorable role of porous matrix and high incident 
sound waves strength respectively. 
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Fig. 1 Effect of Mach Number 
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Fig. 2 Effect of Darcy Number  
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Fig. 3 Effect of Porosity  
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