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Abstract: - Using the arbitrary Lagrangian-Eulerian method, an accurate description of the melt flow and 
impurity distribution in a time-dependent domain Ω(t), t∈[0, T], is performed. The procedure is developed for 
a crystal fiber grown from the melt by the edge-defined film-fed growth (EFG) technique, on the basis of the 
finite-element method using COMSOL Multiphysics software. For this, an EFG system without melt 
replenishment (the melt level in the crucible decreases in time) is considered. By coupling three application 
modes − incompressible Navier-Stokes, moving mesh arbitrary Lagrangian-Eulerian, and convection-diffusion 
− it is illustrated, in the time-dependent case, how the pull of the crystal, with a constant rate vin, generates the 
fluid flow, and it is shown how the resulting fluid flow and deformed geometry determine the impurity 
distribution in the melt and in the crystal. 
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1   Introduction 
Numerical simulations of viscous incompressible 
fluid with free boundaries have been receiving more 
attention over the past few decades. These types of 
problems arise frequently in several important 
industrial applications, such as melting and 
solidification, crystal growth, glass and metal 
forming processes, etc. 

A fundamentally important consideration in 
developing a computer code for simulating problems 
of these types is the choice of an appropriate 
kinematical description of the continuum, which 
determines the relationship between the deforming 
continuum and the finite grid or mesh of computing 
zones, and which provides an accurate resolution of 
material interfaces and mobile boundaries. 
Algorithms usually use two classical descriptions of 
motion: the Lagrangian description and the Eulerian 
description [1-2]. The Lagrangian is preferred for 
“contained fluids” in which there is only small 
motion or for solid mechanics where the 
displacements are relatively small, whereas the 

Eulerian is preferred for any flow model (except 
moving boundaries, free surface) in which the mesh 
would be highly contorted if required to follow the 
motion. The main disadvantage of the Lagrangian 
algorithm is its inability to follow large distortions of 
the computational domain without recourse to 
frequent re-meshing operations. The disadvantages of 
the Eulerian algorithm are: (i) material interfaces lose 
their sharp definitions as the fluid moves through the 
mesh, and (ii) local regions of fine resolution are 
difficult to achieve. 

A hybrid approach which combines the best 
features of both the Lagrangian and Eulerian 
descriptions while minimizing their disadvantages is 
the arbitrary Lagrangian-Eulerian (ALE) technique 
[3-5]. This technique is associated with a moving 
imaginary mesh which follows the fluid domain. 
Denoting the velocity of the domain by w, in the 
Eulerian approach w is zero, and in the Lagrangian 
approach w is equal to the velocity of the fluid 
particles. In the ALE approach, w is equal to neither 
zero nor the velocity of the fluid particles, but varies 
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smoothly and arbitrarily between both of them. This 
arbitrary mesh velocity keeps the movement of the 
meshes under control according to the physical 
problem, and it depends on the numerical simulation. 
More precisely, this method seems to be the 
Lagrangian description in zones and directions where 
“small” motion takes place, and the Eulerian 
description in zones and directions where it would be 
not be possible for the mesh to follow the motion of 
the fluid. 

In this paper, an accurate description of the melt 
flow and impurity distribution in a time-dependent 
domain Ω(t), t∈[0, T], on the basis of the finite-
element method, is performed using COMSOL 
Multiphysics software. Because the geometry 
(actually the mesh) changes shape, the ALE 
algorithm is involved. Thus, for determining the 
impurity distribution in the melt and in the crystal 
when the fluid domain changes in time, three 
application modes are coupled in the time-dependent 
case: incompressible Navier-Stokes (NS), moving 
mesh ALE, and convection-diffusion (CD). This 
coupling procedure is developed for a crystal fiber 
grown from the melt by edge-defined film-fed 
growth (EFG) technique without melt replenishment, 
and it demonstrates the ability of COMSOL to 
simulate flow and concentration evolutions with the 
help of the moving mesh. 

The mathematical model is formulated in two 
dimensions in a cylindrical-polar coordinate system 
attached to the center of the capillary channel (see 
Fig. 1). This is for an Al-doped Si fiber grown from 
the melt by the EFG method with a central capillary 
channel shaper (CCC) [6] and without replenishment. 

 
 

2 Mathematical description 
The fluid flow and the impurity distribution in the 
crucible, in the capillary channel and in the meniscus 
is described in a time-dependent domain Ω(t), t∈[0, 
T], by the incompressible Navier-Stokes and the 
conservative convection-diffusion equations, 
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for which axisymmetric solutions are searched in the 
cylindrical-polar coordinate system (rOz) (see Fig.1). 
In the system (1), u =(ur, uz) is the velocity vector, c 
is the impurity concentration, F =(0, - gl ⋅ρ ) is the 
volume force field due to the gravity, ρl is the melt 
density, p is the pressure, η is the dynamical 

viscosity, t is the time, and D is the impurity 
diffusion. 

 
Fig. 1: Schematic diagram of the EFG system and 
boundary regions used in the numerical model. 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          32



 
The evolution of 

Ω(t) = {(r(R, Z, t), z(R, Z, t))⏐(R,Z)∈Ω(0)} 
is described by the system of partial differential 
equations corresponding to the Laplace smoothing 
(Poisson equations): 
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Here R, Z represent the reference coordinates in the 
reference frame (ROZ), i.e., the fixed frame used for 
the description of Ω(t) and of the mesh velocity, as it 
is represented in Fig. 1(a-b). The solution (r(R, Z, t), 
z(R, Z, t)) satisfies the condition (r(R, Z, 0), z(R, Z, 
0))=(R, Z). 

The coupled system (1-2) is considered in the 
two-dimensional domain Ω(t) with boundaries (Ω1) –
(Ω12), and for solving it, the ALE technique is used. 
The moving mesh (ALE) application mode solves 
the system of partial differential equations (2) for the 
mesh displacement. This system smoothly deforms 
the mesh given by constraints on the boundaries. By 
the Laplace smoothing option (which has been 
chosen), the software introduces deformed mesh 
positions as degrees of freedom in the model. 

For solving the coupled system of PDE (1-2), 
boundary conditions on Ω1 to Ω12 are imposed, with 
the Oz-axis being considered as a line of symmetry 
for all field variables: 
(i) Flow (NS) conditions: On the melt/solid 

interface, the condition of outflow velocity is 

imposed, i.e., ku
s

l
inv⋅=

ρ
ρ

, where k  

represents the unit vector of the Oz-axis. On the 
melt level in the crucible Ω9 and on the intern 
boundary Ω8, we set up the neutral condition, 
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normal vector. The other boundaries are set up 
by the non-slip condition 0=u . 

(ii) Moving mesh (ALE) conditions: The domain 
Ω(t) is divided in two subdomains (labeled 1 and 
2 − see Fig. 1(a-b)). For Subdomain 1, we 
impose no displacement (i.e., Subdomain 1 is 
fixed), and for Subdomain 2 we impose free 
displacement (is free to move). Hence, the mesh 
displacement takes place only in subdomain 2, 
and it is constrained by the boundary conditions 
on the surrounding boundaries Ω7, Ω8, Ω9 and 
Ω11. The displacement in Subdomain 2 is 
obtained by solving the system (2). The 

boundary conditions involve variables from the 
NS application mode. To obtain convergence, it 
is important for the boundary conditions to be 
consistent. The usual point-wise constraints or 
ideal constraints for ALE cause unwanted 
modifications of the boundary condition for the 
other two application modes (NS and CD). For 
this reason, in the ALE application mode, we 
must use non-ideal weak constraints on the 
boundaries: 
- the mesh displacements in the r-direction and 
z-direction on Ω9 are dr = 0, dz = vn×t, where 

inv⋅
−

−= 2
0

2

2*
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c

n  (according to [3-5] the 

mesh velocity should be equal to the fluid 
velocity); 
- the mesh displacement in the r-direction on 
Ω7UΩ11 is dr = 0; the mesh displacement dz in 
the z-direction is not specified, i.e., the mesh 
will follow the fluid movement; 
- the mesh displacements dr and dz in the r-
direction and z-direction are not specified on Ω8 
(the mesh follows the fluid flow). 

(iii) Concentration (CD) conditions: On the 
melt/solid interface, the flux condition is 
imposed, which expresses that impurities are 
rejected back into the melt according to 
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D
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∂ . On the inner boundary Ω8, 

we set up the continuity condition (flux 
difference is zero), 

iNNN uccDn iiii +∇−==−⋅ ,0)( 21 , where i = 
1 for Subdomain 1 and i = 2 for Subdomain 2. 
The other boundaries are set up by the no-
impurity flux condition, i.e., insulation: 
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∂
∂ cn
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c

. 

Besides the above boundary conditions, we have to 
add the initial conditions: 

- for the fluid flow:  u(t0) = 0, v(t0) = 0 in 
Subdomain 1 and u(t0) = 0, v(t0) = vn in 
Subdomain 2 (according to [3-5] the fluid 
velocity should be equal to the mesh velocity); 
- for the pressure: ( ) zgPtp l ⋅⋅−== ρ00  in 
Subdomain 1 and p(t0) = 0 in Subdomain 2; 
- for the initial impurity distribution: 

( )00 tcCc ==  in both subdomains; 
- for the mesh displacement: r(t0)=R, z(t0)=Z. 

Details concerning the significance of these 
quantities and their values for the Al-doped Si rod 
are presented in Table 1 and Fig. 1(c). 
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Table 1: Material parameters for silicon. 

 
 

3 Numerical results 
Numerical investigations are carried out for an Al-
doped Si rod of radius R*=1.5 ×10-3 m, grown in 
terrestrial conditions with a pulling rate vin = 10-6 
m/s. The boundaries presented in Fig.1 are 
determined from the particularities (characteristic 
elements) of the considered EFG growth system. 
Thus, a crucible with inner radius Rc = 23 ×10-3 m is 
considered in which a die of radius R0 = 2×10-3 m 
and length 40 ×10-3 m is introduced, such that 2/3 of 
the die is immersed in the melt. In the die, a capillary 
channel is manufactured with a radius Rcap= 1.5 ×10-3 
m, through which the melt climbs up to the top of the 
die. A seed is placed in contact with the melt; due to 
the heat transfer, this seed melts, and a low meniscus 
with height h = 0.5×10-3 m is developed. These 
above values define the initial geometry Ω(0) in the 
fixed reference frame (ROZ), at t = 0. 

We then start the growth process of the Al-
doped Si rod with a constant pulling rate vin. Because 
the EFG system is without melt replenishment (the 
melt level in the crucible decreases in time) and the 
crystal is pulled with a constant rate vin (at the 
boundary Ω3), a fluid flow in the crucible is induced. 
Hence, the melt height in the crucible decreases, i.e., 
the length of the boundaries Ω7, Ω11 decrease and the 
boundary Ω9 goes down. In this way, the initial 
geometry Ω(0) changes in time as Ω(t) = 
{(r(R, Z, t), z(R, Z, t))⏐(R,Z)∈Ω(0)} with respect to 
the reference frame (ROZ). The new reference frame 

will be the one determined by the spatial coordinates 
r, z of the ALE frame in which the mesh is moving, 
i.e., (r, z)∈Ω(t). 

 
Fig. 2: Mesh deformation in the ALE application 
mode for vn = -4.65×10-8 m/s at three different 
moments of time, 0 < t1 < t2 < t3 <T. 

Nomenclature Value 
c     impurity concentration (mol/m3) 
C0   alloy concentration (mol/m3) 
D    impurity diffusion (m2/s) 
Dl   die length (m) 
g     gravitational acceleration (m/s2) 
h     meniscus height (m) 
K0   partition coefficient 
η     dynamical viscosity (Kg/m×s) 
p      pressure (Pa) 
R*     crystal radius (m) 
Rcap capillary channel  radius (m) 
Rc    inner radius of the crucible (m) 
R0   die radius (m) 
ρl    density of the melt (Kg/m3) 
ρs   density of the crystal (Kg/m3) 
u    velocity vector 
vin    pulling rate (m/s) 
z       coordinate in the pulling 
         direction 

 
0.01 

5.3×10-8 
0.04 
9.81 

5×10-4 
0.002 
7×10-4 

0 
1.5×10-3 
1.5×10-3 
23×10-3 
2×10-3 
2500 
2300 

 
10-6 
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In order to evaluate in which way the resulting fluid 
flow and the deformed geometry determine the 
impurity distribution in the melt and in the crystal, 
using COMSOL Multiphysics 3.2 software, we solve 
the coupled NS-ALE-CD application modes in the 
ALE-frame (rOz). COMSOL Multiphysics solves the 
math necessary to manipulate, move and deform the 
mesh simultaneously with the boundary movement, 
as required by the other coupled physics (see Fig 2). 

The employed mesh is considered with 
maximum element size of 1e-3 and manually refined 
along the boundaries 2, 6, 7, 8, 9, 10, 11 and 12 
(maximum element size is 1e-4), i.e., along the free 
surfaces and their neighborhood boundaries. 
According to the considered geometry, 1703 
triangular mesh elements are used. By the NS-CD-
ALE equations and Laplace smoothing option 
software, 23397 degrees of freedom are introduced 
for these meshes. 

The dependence of the impurity distribution on 
the geometry changes is presented in Fig. 3(a-c). 
Computations show that at the beginning, if the melt 
level decreases in the crucible, then the 
concentration increases starting from the initial 
value C0 = 0.01 mol/m3. Moreover, there exists a 
certain time after which the impurity concentration 
becomes constant even if the melt level still 
decreases in the crucible. 
 

 
4 Conclusions 
The arbitrary Lagrangian-Eulerian (ALE) method 
for coupled Navier-Stokes and convection-diffusion 
equations with moving boundaries has been 
implemented for a melting-solidification process. 
The effect of the deformed geometry on the impurity 
distribution has been studied for an Al-doped Si 
fiber grown from the melt by the edge-defined film-
fed growth (EFG) technique.  
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Fig. 3: Dependence of the impurity 
distribution on the decrease of the melt 
level in the crucible. 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          35



References: 
[1] J. Donea, P. Fasoli-Stella, S. Giuliani, Finite 

element solution of the transient fluid-structure 
problem in Lagrangian coordinates, Proceedings 
of the International Meeting on Fast Reactor 
Safety and Related Physics, Chicago, Vol. 3, 
1976, pp. 1427-1435. 

[2] J. Donea, P. Fasoli-Stella, S. Giuliani, Lagrangian 
and Eulerian finite-element techniques for 
transient fluid-structure interaction problems, 
Trans. SMiRT-4, San Francisco, August 1977. 

[3] T. J. R. Hughes, W. K. Liu, T. K. Zimmermann, 
Lagrangian-Eulerian finite-element formulation 
for incompressible viscous flows, Computer 
Methods in Applied Mechanics and Engineering, 
Vol. 29, 1981, pp. 329-349.   

[4] F. Duarte, R. Gormaz, S. Natesan, Arbitrary 
Lagrangian-Eulerian method for Navier-Stokes 
equations with moving boundaries, Computer 
Methods in Applied mechanics and Engineering, 
Vol. 193, 2004, pp. 4819-4836. 

[5] M. Fernandez, M. Moubachir, Sensitivity analysis 
for an incompressible aeroelastic system, 
Mathematical Models and Methods in Applied 
Sciences, Vol. 12/ 8, 2002, pp. 1109-1130. 

[6] L. Braescu, St. Balint, L. Tanasie, Numerical 
studies concerning the dependence of the impurity 
distribution on the pulling rate and on the radius 
of the capillary channel in the case of a thin rod 
grown from the melt by the edge-defined film-fed 
growth (EFG) method, Journal of Crystal 
Growth, Vol. 291/1, 2006, pp. 52-59. 

 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          36


