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Abstract: The object of this paper is (i) to formulate the multi-time stochastic control theory, (ii) to propose a
multi-time Itô chain rule, (iii) to find stochastic representations formulas for suitable functions, and (iv) to provide
a connection between the multi-time stochastic control theory and multi-time dynamic programming. Section 1
defines and studies the multi-time random partial differential equations, the multi-time stochastic control theory,
the multi-time Brownian flow and the multi-time Itô chain rule. Section 2 describes a stochastic representation
formulas for harmonic functions, and for solutions of terminal-value problems associated to a heat type PDEs
system. Section 3 studies the stochastic multi-time Hamilton-Jacobi-Bellman PDEs system. Section 4 formulates
same conclusions regarding the original results of the paper.
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gramming, multi-time Hamilton-Jacobi-Bellman PDEs.

1 Multi-time stochastic control
theory

In order to extend the theory of single-time stochastic
control theory to the multi-time case, when the evo-
lution in Rn is m-dimensional, we can formulate a
path-integral stochastic optimal control or a multiple
integral stochastic optimal control.

1.1 Multi-time stochastic partial differential
equations

Let us formulate the theory of multi-time random PDE
(partial differential equations). Consider the vector
fieldsFα = (F i

α), α = 1, ..., m; i = 1, ..., n, on Rn

and the Cauchy problem

(PDE)
∂xi

∂tα
(t) = F i

α(x(t)), x(0) = x0, t ∈ Rm
+ ,

associated to a completely integrable PDE system.
By similarity, some evolution physical phenomena are
described by a Cauchy problem

∂Xi

∂tα
(t) = F i

α(X(t))+σξi
α(t), X(0) = x0, t ∈ Rm

+ ,

attached to astochastic completely integrable aug-
mented PDE system, whereX(·) = (Xi(·)) areran-
dom variablesrepresenting thestochastic process, and

ξα(·) = (ξi
α(·)) denotewhite noisesterms causing

random fluctuations.
We extend the previous point of view in two ways:
- the smooth nonholonomic case, re-writing as a

stochastic Cauchy-Pfaff problem

dXi(t) = F i
α(X(t))dtα + σξi

α(t)dtα

X(0) = x0, t ∈ Rm
+ ;

- the eventually non-smooth case, as a Cauchy
problem involving path-dependent stochastic integrals

Xi(t) = xi
0 +

∫

γ0,t

(F i
α(X(s)) + σξi

α(t))dsα,

whereγ0,t is a piecewiseC1 curve joining the points
0 andt in Rm

+ .
A solution X(·) is a collection of samplem-

sheets of a stochastic process, plus probabilistic infor-
mation as to the likelihood of the various multi-time
evolutions.

1.2 Multi-time stochastic control theory

On Rm
+ we use the product order. Then, a multi-

time interval[t0, t] ⊂ Rm
+ is identified to the hyper-

parallelepipedΩt0,t, wheret0, t are diagonal opposite
points. The functionsFα : Rn × U → Rn, U ⊂ Rk
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determine themulti-time controlled stochastic Cauchy
problem

(SPDE)
∂X

∂sα
(s) = Fα(X(s), U(s)) + σξα(s)

X(t) = x0, s ∈ Ωt,t0 ,

under the hypothesis of complete integrability.
A mappingU(·) of Ωt,t0 into U ⊂ Rk, such that

for each multi-timet ≤ s ≤ t0 the valueU(s) de-
pends only ons and observations ofX(τ) for t ≤
τ ≤ s is calledcontrol. The correspondingcost func-
tional is the expected values over all samplem-sheets
for the solution of(SPDE).

There are two different approaches when dealing
with cost functionals in the multi-time context. One
variant is to use thecurvilinear integral functional:

Px,t(U(·)) =

= E

{∫

γt,t0

F 0
β (X(s), U(s))dsβ + g(X(t0))

}
,

where theruning costF 0
β (X(s), U(s))dsβ is an inte-

grable 1-form andg(X(t0)) is the terminal cost. An-
other variant is to use amultiple integral functional:

Px,t(U(·)) =

= E

{∫

Ωt,t0

F 0(X(s), U(s))ds1...dsm + g(X(t0))

}
.

The main goal is to find an optimal controlU∗(·) such
that

Px,t(U∗(·)) = max
U(·)

Px,t(U(·)).

To do that we adapt the multi-time dynamic program-
ming methods, introducing thesup value function

v(x, t) = sup
U(·)

Px,t(U(·)).

For finding an optimal controlU∗(·) we follow two
steps:

- we look for a multi-time Hamilton-Jacobi-
Bellman type PDEs system satisfied by the function
v(x, t);

- we use the solutionv(x, t) in designing the op-
timal controlU∗(·).

Of course, the stochastic effects modify the struc-
ture of the multi-time Hamilton-Jacobi-Bellman type
PDEs system(mtHJB), as compared with determin-
istic case.

In the next explanations we use only the curvilin-
ear integral cost functional.

1.3 Multi-time Brownian flow

A multi-time stochastic processW (t) is called a
Wiener processor Brownian m-flow (motion)if

1) W (0) = 0;
2) W (t), t = (t1, ..., tm) is Gaussian withµ =

0, σ2
t = vol Ω0,t, i.e.,W (t) is N(0, σ2

t ).
These imply:
3) each samplem-sheet is at least continuous;
4) for all choices of multi-times,0 < t1 < · · · <

tk, the random variables

W (t1), W (t2)−W (t1), · · · , W (tk)−W (tk−1)

are independent (independent increments).
In this context,

E(W (t)) = 0

E(W 2(t)) = vol Ω0,t = t1...tm =
∫

γ0,t

d(τ1...τm).

Define a Brownian m-flow (motion) onRn as
W (t) = (W 1(t), ...,Wn(t)), where eachW i(t) is an
independent Brownian m-flow (m-motion) onR. Let

us accept thatξα(t) =
∂W

∂tα
(t), though the function

t → W (t, ω) is usually nowhere differentiable. We
introduce themulti-time stochastic PDE

∂X

∂tα
(t) = Fα(X(t)) + σξα(t), t ∈ Rm

+ ,

where we informally think ofξα(·) =
∂W

∂tα
(·). Also

we accept that the conditions of complete integrabil-
ity are satisfied, though in many problems this fact is
not necessary (see the nonholonomic case and the ex-
istence conditions for an integral). Adding the initial
pointX(0) = x0, we obtain a stochastic Cauchy prob-
lem. A multi-time stochastic process is solution of
this Cauchy problem if and only if it solves the path-
integral equation

X(t) = x0 +
∫

γ0,t

Fα(X(s))dsα + σW (t),

whereγ0,t is an arbitraryC1 curve joining the points0
andt in Rm

+ . On the other hand, this integral equation
can be solved by the method of successive approxima-
tion:

X0(t) = x0

Xk+1(t) = x0 +
∫

γ0,t

Fα(Xk(s))dsα + σW (t)

limk→∞Xk(t) = X(t).
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Now, let us consider a more general completely
integrable multi-time stochasticPDE system

∂Xi

∂tα
(t) = F i

α(X(t)) + H i
j(X(t))ξj

α(t), t ∈ Rm
+ ,

which can be written

∂Xi

∂tα
(t) = F i

α(X(t)) + H i
j(X(t))

∂W j

∂tα
(t)

or as anItô-Pfaff stochastic system

dXi(t) = F i
α(X(t))dtα + H i

j(X(t))dW j(t).

By analogy with the foregoing, we sayX(·) is a solu-
tion, with the initial conditionX(0) = x0, if

X(t) = x0+
∫

γ0,t

Fα(X(s))dsα+Hj(X(s))dW j(s),

whereγ0,t is a piecewiseC1 curve joining the points

0 andt in Rm
+ . The parts

∫

γ0,t

Hj(X(s))dW j(s) are

calledItô stochastic curvilinear integrals.
Remark. Let W (·) be a multi-time Brownian

flow. A processY (·) with the property thatY (s), 0 ≤
s ≤ t depends onW (τ) for 0 ≤ τ ≤ t, but
not on W (τ) for s ≤ τ , is callednonanticipating.
These elements determine theItô stochastic curvi-
linear integrals

∫

γ0,t

Hj(X(s))dW j(s), whereγ0,t is

an arbitraryC1 curve joining the points0 and t in
Rm

+ . The most important property of such integrals

is E

(∫

γ0,t

Hj(X(s))dW j(s)

)
= 0.

1.4 Multi-time It ô chain rule

As is well-known thechain rule in a single-timeItô
calculuscontains additional terms as compared with
the usual chain rule from differential calculus. To pass
to the multi-time case and to justify how appear new
additional terms, we shall consider a suitable multi-
timeCauchy-It̂o-Pfaff stochastic problem

dXi(t) = F i
α(X(t))dtα + σdW i(t), Xi(0) = xi

0,

and we define the composed functionY (t) =
u(X(t), t), u : Rn × Rm

+ → R. Let us accept the
approximative formula

dY (t) ≈ ∂u

∂tα
(X(t), t)dtα +

∂u

∂xi
(X(t), t)dXi(t)

+
1
2

∂2u

∂xi∂xj
(X(t), t)dXi(t)dXj(t).

At least from geometrical point of view, the gen-
eralization of the single-time Itô chain rule to the
multi-time case must bifurcates as follows.

First It ô chain rule. Firstly, we use the euristic
rules

dW idW j = δijds, ds2 = δαβdtαdtβ

(arclength element, degree one indtα), plug these
identities into the previous formula and keep only
terms of degree one indtα. We obtain thefirst Itô
chain rule:

dY (t) =
∂u

∂tα
(X(t), t)dtα+

∂u

∂xi
(X(t), t)(F i

α(X(t))dtα

+σdW i(t)) +
σ2

2
∆u(X(t), t)ds.

Second It̂o chain rule. Secondly, we use the eu-
ristic rules

dW idW j = δijcα(W )dtα

(linear indtα), plug these identities into the previous
formula and keep only terms which are linear indtα.
We obtain thesecond It̂o chain rule:

dY (t) =
∂u

∂tα
(X(t), t)dtα+

∂u

∂xi
(X(t), t)(F i

α(X(t))dtα

+σdW i(t)) +
σ2

2
∆u(X(t), t)cα(X(t))dtα.

Remark. From geometrical point of view, we
can replace automatically the pair of Euclidean spaces
(Rm, δαβ), (Rn, δij) with a pair of simple Rieman-
nian manifolds(Rm, hαβ), (Rn, gij), or more gener-
ally (T, h), (M, g), extending nontrivially the multi-
time Itô chain rule. In this context, the natural do-
main of Lagrange functions is the first order jet bundle
J1(T, M).

2 Stochastic representation formulas
for solutions of PDEs

Let us show that the solutions of multi-time elliptic
and parabolic PDEs, both with Cauchy and Dirichlet
boundary conditions, have a probabilistic interpreta-
tion, which not only provides intuition on the nature of
the problems described by these PDEs, but it is quite
useful in the proof of general theorems.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    173



2.1 A stochastic representation formula for
harmonic functions

Let D be a domain inRn with the boundary∂D. The
solution of the boundary-value problem

∆u(x) = 0, x ∈ D; u(x) = g(x), x ∈ ∂D

is calledharmonic function.
In order to find a stochastic representation for-

mula for the harmonic functionu, we consider the
random processX(t) = W (t) + x, t = (t1, ..., tm),
i.e.,

dX(t) = dW (t), X(0) = x, t ∈ Rm
+ ,

where W (·) denotes anm-dimensional Brownian
sheet. The compound functionY (t) = u(X(t)) has a
first Itô differential

dY (t) =
∂u

∂xi
(X(t))dW i(t) +

σ2

2
∆u(X(t))ds.

Consequently

dY (t) =
∂u

∂xi
(X(t))dW i(t)

or as Stieltjes curvilinear integral

u(X(t)) = Y (t) = Y (0) +
∫

γ0,t

∂u

∂xi
(X(s))dW i(s),

whereγ0,t is a curve joining the points0 andt.
Let τ denote the random first multi-time the sam-

ple m-sheet hits∂D. Then, replacingt = τ , we ob-
tain

u(x) = u(X(τ))−
∫

γ0,τ

∂u

∂xi
(X(s))dW i(s).

On the other hand,u(X(τ)) = g(X(τ)) by the defini-
tion of τ , and henceu(x) = E[X(τ)]. Consequently,
to recover the solutionu(x) of the previous boundary
problem, we need to consider all the samplem-sheets
of themulti-time Brownian flowstarting at the pointx
and take the averageg(X(τ)).

2.2 A stochastic representation formula for
solution of heat PDE system

Let us consider the terminal-value problem associated
to anonhomogeneous backwards heat system

∂u

∂tα
(x, t) +

σ2

2
cα(u)∆u(x, t) = fα(x, t)

x ∈ Rn, 0 ≤ t ≤ t0, u(x, t0) = g(x).

Fixing x ∈ Rn and0 ≤ t < t0, we introduce the
multi-time stochastic processdX(s) = σdW (s), s ≥
t, X(t) = x. The second It̂o chain rule permits to
write

du(X(s), s) =
∂u

∂sα
(X(s), s)dsα+

∂u

∂xi
(X(s), s)dXi(s)

+
σ2

2
∆u(X(s), s)cα(u)dsα.

Taking the curvilinear integral, we obtain

u(X(t0), t0) = u(X(t), t)+
∫

γ0,t

(
σ2

2
∆u(X(s), s)cα(u)

+
∂u

∂sα
(X(s), s)

)
dsα +

∫

γ0,t

∂u

∂xi
(X(s), s)dW i(s).

Sinceu solves the previous terminal-value problem,
we can write

u(x, t) = E

(
g(X(t0))−

∫

γ0,t

fα(X(s), s)dsα

)
.

This is a stochastic representation formula for the so-
lution u of the initial nonhomogeneous backwards
heat system problem.

3 Multi-time stochastic control the-
ory and dynamic programming

Themulti-time controlled stochastic Cauchy-Itô-Pfaff
problem

dX(s) = Fα(X(s), U(s))dsα + σdW (s)

X(t) = x, s ∈ Ωt,t0

is equivalent to

X(τ) = x +
∫

γt,τ

Fα(X(s))dsα + σ(W (τ)−W (t)),

whereγt,τ is a piecewiseC1 curve joining the points
t andτ in Ωt,t0 . We add thecost functional

Px,t(U(·)) =

E

{∫

γt,τ

F 0
β (X(s), U(s))dsβ + g(X(t0))

}
,

where theruning costF 0
β (X(s), U(s))dsβ is an inte-

grable 1-form andg(X(t0)) areterminal cost. These
produce thesup value functions

v(x, t) = sup
U(·)

Px,t(U(·))
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which permits to pass to the method of dynamic pro-
gramming in two steps:

- find a PDE system satisfied by the function
v(x, t);

- use thisPDE system to design an optimum
controlU∗(·).

3.1 Multi-time stochastic Hamilton-Jacobi-
Bellman PDE system

Let U(·) be an arbitrary control used for multi-time
s ∈ Ωt,t+h, whereh > 0. Thereafter we employ an
optimal control. It appears the inequality

v(x, y) ≥ E

{∫

γt,t+h

Fβ(X(s), U(s))dsβ

+ v(X(t + h), t + h)}
with equality for an optimal controlU(·) = U∗(·),
where γt,t+h is a piecewiseC1 curve joining the
points t and t + h. For an arbitrary control we can
write

0 ≥ E

{∫

γt,t+h

Fβ(X(s), U(s))dsβ

+ v(X(t + h), t + h)− v(x, t)} =

= E

{∫

γt,t+h

Fβ(X(s), U(s))dsβ

}

+E {v(X(t + h), t + h)− v(x, t)} .

Using second It̂o formula,

dv(X(s), s) =

=
∂v

∂sβ
(X(s), s)dsβ +

∂v

∂xi
(X(s), s)dXi(s)

+
1
2

∂2v

∂xi∂xj
(X(s), s)dXi(s)dXj(s)

=
∂v

∂sβ
dsβ +

∂v

∂xi
(F i

βdsβ +σdW i(s))+
σ2

2
cβdsβ∆v,

we can write

v(X(t + h), t + h)− v(X(t), t) =

∫

γt,t+h

(
∂v

∂sβ
+

∂v

∂xi
F i

β +
σ2

2
cβ∆v

)
dsβ

+
∫

γt,t+h

σ
∂v

∂xi
dW i(s).

Taking expected values, we deduce

E{v(X(t + h), t + h)− v(X(t), t)} =

E

{∫

γt,t+h

(
∂v

∂sβ
+

∂v

∂xi
F i

β +
σ2

2
cβ∆v

)
dsβ

}
.

The previous relations imply

0 ≥ E

{∫

γt,t+h

(
∂v

∂sβ
+ F 0

β +
∂v

∂xi
F i

β

+
σ2

2
cβ∆v

)
dsβ

}
.

Let us convert the previous inequality into a partial
derivative inequality. We seth = εeβ, ε > 0, and we
write

0 ≥ E

{
1
ε

∫

γt,t+h

(
∂v

∂sβ
(X(s), s) + F 0

β (X(s), U(s))+

∂v

∂xi
(X(s), s)F i

β(X(s), U(s))+
σ2

2
cβ∆v(X(s), s)

}
dsβ.

Takingε → 0, and having in mindX(t) = x, U(t) =
u ∈ U , we find

0 ≥ ∂v

∂tβ
(x, t) + F 0

β (x, u) +
∂v

∂xi
(x, t)F i

β(x, u)

+
σ2

2
cβ∆v(x, t).

This inequality holds for anyx, t, u, with equality for
an optimal control, i.e.,

maxu∈U

{
∂v

∂tβ
+ F 0

β +
∂v

∂xi
F i

β +
σ2

2
cβ∆v

}
= 0.

Theorem (multi-time stochastic Hamilton-
Jacobi-Bellman PDE system). The maximum value
functionv associated to a multi-time stochastic con-
trol problem is a solution of the(mtSHJB) problem

∂v

∂tβ
(x, t) +

σ2

2
cβ(v)∆v(x, t)

+max
u∈U

{
F 0

β (x, u) +
∂v

∂xi
(x, t)F i

β(x, u)
}

v(x, t0) = g(x).

In this way, the multi-time stochastic Hamilton-
Jacobi-BellmanPDE system consists in semilinear
parabolicPDEs.
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3.2 Designing an optimal control

Suppose that we know a solutionv of the(mtSHJB)
problem. For each point(x, t), we compute a value

u ∈ U for which F 0
β (x, u) +

∂v

∂xi
(x, t)F i

β(x, u) is

maximum, i.e., for each(x, t) we chooseu = α(x, t)
as the point of maximum. Then we solve the multi-
time controlled stochastic Cauchy problem

dX∗(s) = Fβ(X∗(s), α(X∗(s), s))dsβ + σdW (s)

X∗(t) = x,

assuming this is possible. We findX∗(s), and then
U∗(s) = α(X∗(s), s) is an optimal feedback control.

4 Conclusion
This paper studies the stochastic optimal control prob-
lems involving curvilinear integral cost functionals
constrained by stochastic evolution PDEs (infinite-
dimensional systems), combining the ideas of [1]-[11]
with several additional ingredients. These problems
are of special interest in a variety of applications,
e.g., image processing, geometric optics and stochas-
tic differential games. The topics include: multi-time
stochastic partial differential equations, multi-time
stochastic control theory, multi-time Brownian flow,
two variants of multi-time It̂o chain rule, a stochas-
tic representation formula for harmonic functions, a
stochastic representation formula for solution of heat
PDE system, multi-time stochastic Hamilton-Jacobi-
Bellman PDE system and designing an optimal con-
trol.

The previous theory is sometimes imprecise, but
we can introduce rigorous derivations. It offers open
problems for the researchers involved into optimal
stochastic theories.
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[7] C. Udrişte, I. Ţevy, Multi-Time Euler-Lagrange-
Hamilton Theory, WSEAS Transactions on
Mathematics, 6, 6 (2007), 701-709.
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[10] C. Udrişte, Maxwell geometric dynamics,Eu-
ropean Computing Conference, Vouliagmeni
Beach, Athens, Greece, September 24-26, 2007.

[11] Gh. Zb̆aganu, Continuous independent functions
and construction of processes onΩ = (0, 1),
Rev. Roumaine Math. Pures Appl., 31 (1986),
77-84.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    176


