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Abstract 

In this paper, separation of lead ions with the aid of a laboratory scale electrodialysis (ED) 

cell was modeled using artificial neural network (ANN) technique. Separation percent (SP) 

of lead ions was predicted at various concentrations (100, 500, and 1000 ppm), 

temperatures (25, 40, and 60 
◦
C), flow rates (0.07, 0.7, and 1.2 mL/s) and voltages (10, 20, 

and 30 V). An ANN structure with two hidden layers (4:5:4:1) was used for prediction. 

The modeling results showed that there is an excellent agreement between the 

experimental data and the predicted values, with mean absolute errors less than 1%. ANN 

modeling technique was found out to have many favorable features such as efficiency, 

generalization and simplicity, which make it an attractive choice for modeling of complex 

systems, such as wastewater treatment processes. 
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1. Introduction 

Many industrial wastewaters produced by 

metal plating, metal finishing, mining, 

automotive, aerospace, battery and 

general chemical plants, often contain 

high concentration of heavy metals [1]. 

Lead is a highly toxic heavy metal. It 

impairs hemoglobin synthesis, 

particularly in children, and may cause 

neurological disorders. Wastes that 

include lead are found in paints, pipes, 

batteries and in some petrol types [2]. 

The conventional heavy metal removal 

processes such as chemical precipitation 

[3] coagulation, complexing, solvent 

extraction [4-6], ion exchange [7,8], 

biosorption [9-13] and electro-membrane 

processes [14-16] and ion 

exchange/adsorption on solid surfaces 

[17] has some inherent shortcomings 

such as requiring a large area of land, a 

sludge dewatering facility, skillful 

operators, High capital and regeneration 

costs and multiple basin configurations 

[3]. 

Membranes can also be used to obtain 

effluents without metallic contaminants. 

ED is an electro-membrane process for 

separation of ions across charged 

membranes, which has been widely used 

for production of drinking and process 

water from brackish water and seawater, 

treatment of industrial effluents, recovery 

of useful materials from effluents and salt 

production [18-20].  

Artificial neural networks (ANNs) 

demonstrated to be an effective 

predictive instrument for modeling the 

behavior of nonlinear dynamic systems, 

typical of several engineering 

applications. The interest of scientific and 

academic community towards the 

applications of ANNs to membrane 

technology is progressively increasing. In 

recent years, ANNs have been used as a 

powerful modeling tool in various 

membrane processes such as membrane 

filtration, microfiltration, ultrafiltration, 

nanofiltration, reverse osmosis, gas 
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separation, membrane bioreactors and 

Fuel Cells. But, no record for modeling 

of ED desalination by ANN was 

surprisingly found in the literature. 

The objective of this paper is to develop a 

multi layer perceptron (MLP) neural 

network model in order to predict SP of 

lead ions during ED of wastewater. 

  

2. Theory 

The objective of a neural network is to 

compute output values from input values 

by some internal calculations. The basic 

component of a neural network is the 

neuron, also called “node”. Figure 1 

illustrates a single node of a neural 

network. 

Inputs are represented by a1, a2 and an, 

and the output by Oj. The node 

manipulates these inputs to give a single 

output signal. The values w1j, w2j, and 

wnj, are weight factors associated with the 

inputs to the node. Weights are adaptive 

coefficients within the network that 

determine the intensity of the input 

signal. Every input (a1, a2, …, an) is 

multiplied by its corresponding weight 

factor (w1j, w2j, …, wnj), and the node 

uses summation of these weighted inputs 

(w1j a1, w2j a2, …, wnj an) to perform 

further calculations. In the initial setup of 

a neural network, weight factors usually 

are chosen randomly according to a 

specified statistical distribution [21].  

The other input to the node, bj, is the 

node’s internal threshold, also called 

bias. This is a randomly chosen value that 

governs the node's net input through the 

following equation: 

( )∑
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     (1) 

Node’s output is determined using a 

mathematical operation on the node's net 

input. This operation is called a transfer 

function. Sigmoid transfer function, 

which was applied in the present work, is 

as follows: 
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     (2) 

The neuron’s output, Oj, is found by 

performing one of these functions on the 

neuron’s net input, uj. Neural networks 

are made of several neurons that perform 

in parallel or in sequence [22]. 

3. Experimental 

An analytical grade salt (99.9% lead 

nitrate supplied by Merck) and deionized 

water were used in all experiments to 

produce solutions with wastewater 

qualities. The ED cell was packed with a 

pair of cation and anion exchange 

membranes (CEM and AEM) and a pair 

of platinum electrodes (anode and 

cathode). Both electrodes were made of 

pure platinum. Area of each electrode 

was 4.2 × 4.2 mm
2
. Thickness of dilution 

cell (center) was 4 mm and thickness of 

each concentrate cell (left and right) was 

3 mm. Schematic view of the applied ED 

cell is presented in Figure 2. Lead nitrate 

solution is introduced into the three 

compartments. When a DC potential is 

applied between two electrodes, 

positively charged lead ions move toward 

the cathode, pass through the negatively 

charged CEM and are retained by the 

positively charged AEM. On the other 

hand, nitrate ions move toward the anode, 

pass through the AEM and are retained 

by the CEM. At the end, ion 

concentration increases in the side 

compartments with a simultaneous 

decrease of ion concentration in the 

middle compartments. 

AR204SXR412 and CR67, MK111 anion 

and cation exchange membranes supplied 

by Arak petrochemical complex and 

made by Ionics incorporated were used in 

all experiments. Effective area of each 

membrane was 6 × 6.5 mm
2
. 

According to our previous studies 

[2,20,23], four parameters, each at three 

levels (temperature 25, 40 and 60 °C; 

concentration 100, 500 and 1000 ppm; 

flow rate 0.07, 0.7 and 1.2 mL/s; Voltage 

10, 20 and 30 V) were investigated. SP 
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defined as follows was used as a criterion 

of the cell performance: 

100
C

CC
SP

0

0 ×
−

=    

    (3) 

Where, C0 and C are feed and dilute 

concentrations, respectively.  

Concentration of cations (Pb
2+
) only in 

the dilute compartment was measured 

with the aid of atomic absorption 

(Shimadzu, AA-670).  

Totally 81 experimental data are 

collected and used for ANN modeling of 

ED for training/validation/testing subsets. 

In this work, feedforward multilayer 

neural network with two hidden layers 

was employed for modeling of ED. It was 

used to transform input data 

(concentration, temperature, flow rate 

and voltage) into a desired response (SP). 

Figure 3 illustrates the structure of the 

ANN used for modeling of ED. 

4. Results and Discussion 

The total 81 experimental data were 

randomly divided into three subsets of 

training, validation and testing for 

developing ANN model. Distribution of 

these data is shown in Figure 4. 50 

training data were used to update the 

network weights and biases. In order to 

check the generality of network 

prediction and to prevent the data 

overfitting 21, validation data were 

applied. The rest of data was used to test 

the neural network.  

The MLP networks were created in the 

neural network toolbox of Matlab with 

newff function. Performances of different 

training algorithms were studied for a 

specified network with four layers (1 

input layer/ 2 hidden layer/ 1 output 

layer). Due to the convergence speed and 

the performance of network to find better 

solution, the Levenberg–Marquardt 

training method was selected as a proper 

training. 

Another important factor in ANN design 

is the type of transfer functions. ANNs 

owe their non-linear capability to the use 

of non-linear transfer functions. Different 

transfer functions can be used for neurons 

in the different layers. Among different 

transfer functions available in Matlab, log 

sigmoid function was selected for all 

neurons due to its better prediction 

performance than other transfer 

functions. The log sigmoid function is 

bounded between 0 and 1, so the input 

and output data should be normalized to 

the same range as the transfer function 

used. In other words, the logarithmic 

sigmoid transfer function gives scaled 

outputs (SP) in this range (0 to 1). 

Network structure has significant effects 

on the predicted results. The number of 

input and output nodes, as mentioned 

before, is equivalent to the number of 

input and output data, respectively (4 and 

1 in this work). However, the optimal 

number of hidden layers and the optimal 

number of nodes in each layer, are case 

dependent and there is no straightforward 

method for determination of them. In this 

study, optimum structure was found to be 

4:5:4:1 (2 hidden layers with 5 and 4 

neurons in the first and second layer, 

respectively), as illustrated in Figure 4. 

Another important factor that affects the 

performance of networks is selection of 

the initial weights. Typically, the weight 

factors are set randomly using either 

normal or Gaussian distribution. The 

wrong choice of initial weights can lead 

to the local minimum values and 

therefore bad performance of the 

networks. In order to prevent these 

phenomena, 20 runs were performed 

using different random values of initial 

weights and the best trained network was 

selected.  

In Figure 5, the experimental results 

versus neural network predictions of the 

selected network (4:5:4:1) is plotted at 

the minimum MSE of validation data. 

According to this figure, excellent 

performance of the 4:5:4:1 network is 

confirmed. 

The selected network was used to predict 

SP for different inputs in the domain of 

training data. In Figures 6-8, SP is plotted 
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versus operating parameters in 3D plots. 

As can be seen, increasing temperature, 

concentration and voltage increases SP 

values. It is obvious due to the fact that 

increasing temperature and concentration 

decreases the electrical resistance of 

solution, while increasing voltage 

increases the driving force. At higher 

flow rates, SP values decreases because 

the more flow rate means the less 

residence time, and thus, ions that are 

between the membranes do not have 

enough time to transfer through them. 

The generalization performances of 

4:5:4:1 network, show no oscillations and 

this confirms an excellent prediction 

performance of ANN. ANN predictions 

can also be used for optimization 

purposes. 

5. Conclusion 

ANN was employed as an interesting 

method for modeling of ED; a 

wastewater treatment process. A 

multilayer network (FFNN-MLP), with 

two hidden layers (4:5:4:1), was applied 

to predict SP of Pb
2+
 ions in the dilute 

compartment of a laboratory scale ED 

cell. ANN successfully tracked the 

nonlinear behavior of SP versus 

temperature, voltage, concentration and 

flow rate with standard deviation not 

more than 1%. For almost all 

experiments, the ANN was confirmed to 

be an adequate interpolation tool, where 

good prediction was obtained. ANN is 

found out to be an efficient tool to model 

the complicated ion transfer mechanism 

in an electrical field. 
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Figure 1- Single node anatomy 
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Figure 2- Schematic view of an ED cell 

 

 

 
Figure 3- Structure of a typical ANN used for modeling of ED 
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Figure 4- Distribution of (a) training, (b) validation and (c) testing data subsets 
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: Training data    : Validating data    : Testing data 
Figure 5- Performance of 4:5:4:1 network at the minimum MSE of validation data 

 

 
Figure 6- Generalization performances of optimal ANN, effects of voltage and temperature on SP 

at 500 ppm feed concentration and 0.07 mL/s feed flow rate 
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Figure 7- Generalization performances of optimal ANN, effects of voltage and flow rate on SP 

at 500 ppm feed concentration and 60 °C feed temperature 

 

 

 
Figure 8- Generalization performances of optimal ANN, effects of voltage and Concentration on SP 

at 0.07 mL/s feed flow rate and 60 °C feed temperature 
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