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Abstract: - In this paper we construct several exact analytical three-dimensional solutions for the distribution 
of the temperature field in the wall with rectangular fin. We assume that the heat transfer process in the wall 
and the fin is stationary. These exact solutions are obtained by the Green function method in the form of the 
2nd kind Fredholm integral equation. They generalize traditional statements in several senses, e.g., we consider 
3-D statement by different boundary conditions and the heat exchange take place at non-homogeneous 
environmental temperature. 
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1   Introduction 
Systems with extended surfaces (fins, spines) are 
related to refrigerators, radiators, engines and 
modern electronics (PC), etc. Usually their 
mathematical modeling is realized by one 
dimensional steady-state assumptions [1]-[5]. In our 
previous papers we have constructed various two 
dimensional analytical approximate [6] – [10] and 
exact [11] solutions. In this paper we concentrate 
our attention on one element of fin assembly, the 
whole system (assembled into arrays of fins) will be 
considered in the second paper. Such statement 
essentially generalizes the problem considered 
earlier in literature, e.g., in paper [12]. In these two 
parts of our paper we obtain several new exact 
analytical solutions by the Green function method 
[13]-[16].  
 
 
2   Mathematical Formulation of 3-D 
Problem  
In this part 1 we will consider full mathematical 
three-dimensional formulation of steady-state 
problem for one element of system with rectangular 
fin (this one element is depicted with darker color in 
attached figure). This mathematical formulation is 
essentially broader as in our papers [6]-[11]. 
We will use following dimensionless arguments, 
parameters: 
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We have introduced following dimensional thermal 
and geometrical parameters: )( 0kk - heat 

conductivity coefficient for the fin (wall), )( 0hh - 

heat exchange coefficient for the fin (wall), 2B – fin 
width (thickness), L  –fin length, Δ - thickness of 
the wall, W −   walls’ width (length), 2R  – 
distance between two fins (fin spacing). 
Further, 0 ( , )y zΘ  is the surrounding (environment) 
temperature on the left (hot) side (the heat source 
side) of the wall, ( , , )x y zΘ - the surrounding 
temperature on the right (cold - the heat sink side) 
of the wall and the fin. Finally, ( , , )V x y z  

( 0 ( , , )V x y z ) are the dimensional temperatures in 

the fin (wall), where ( )a bT T  are integral averaged 
environment temperatures over appropriate 
edges: 
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The one element of the wall (base) is placed in the 
domain [ ] [ ]{ }0, , 0,1 , [0, ]x y z wδ∈ ∈ ∈ . The 

rectangular fin in dimensionless arguments occupies 
the domain [ ] [ ]{ }, , 0, , [0, ]x l y b z wδ δ∈ + ∈ ∈ . 

We describe the dimensionless temperature field by 
function ( )0 ( , , ) ( , , )V x y z V x y z  in the wall (fin). 

They fulfill the Laplace equations: 
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At first we consider the three dimensional statement 
with given heat fluxes from the flank surfaces 
(edges) and from the top and the bottom edges: 
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Such type of boundary conditions (BC) allows us to 
make the exact reducing of this three-dimensional 
problem to two-dimensional problem for Poisson 
equation by conservative averaging method [17]-
[20]. Let us introduce following integral average 
values: 
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It remains to realize the integration of main equation 
by usage of the both BC (1) (corresponding one pair) 
and we obtain: 
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We add to main partial differential equations (3) 
needed BC as follow: 
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We allow the material of the fin to be different from 
the walls’ material. It means we must formulate the 
conjugations conditions on the surface between the 
wall and the fin. We assume them as ideal thermal 
contact - there is no contact resistance: 
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 We have following BC for the fin: 
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We assume that all conditions which ensure 
existence and uniqueness of classic solution of the 
problem (3)-(12), e.g. continuity of environment 
temperatures, consistency conditions on the sides of 
edges etc. are fulfilled. 
Let’s mention, that almost all of the authors 
negligible the heat transfer trough flank surface 
z w= (as well as from edge 0z = ). We assume 
given (prescribed) heat fluxes on both. 
 
 
3 Exact Solution of 2-D Problem  
 
3.1 Solution of the Simplified Problem  
We would like to explain the main idea of solution 
for the 2-D case of periodical system with constant 
dimensionless environmental temperatures 

( )0 01 bTϑ = Θ =  and 0( )aTϑ = Θ = . We neglect 
additionally the heat fluxes from flank edges. In this 
particular case we have following main equations for 
the temperature 0 ( , )U x y of the wall, respectively 
temperature ( , )U x y of the fin: 
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 The BC (6), (7) and (12) are assumed to be 
homogeneous: 
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Instead of BC (4), (5), (10) and (11) we have: 
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The conjugations conditions on the line between the 
wall and the fin are still standing in the form (8), (9) 
for the functions ( , )U x y and 0 ( , )U x y . The linear 
combination of the equations (8), (9) together with 
BC (17) allow us rewrite them as following BC on 
the right hand side of the wall: 
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On the assumption that the function 0 ( , )F x y  is 
given we can represent solution for the wall in very 
well known form by the Green function: 
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Taking in the account formula (21) we rewrite the 
solution for the wall as follow: 
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The expression of the Green function in (22), 
(23) has the form (see, e.g. [15]): 
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We have for the first one-dimensional Green 
function in (24) the following expression for the 
eigenfunctions:  
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 Here mμ  are the roots of the transcendental 
equation: 
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Unfortunately the representation (22) is 
unusable as solution for the wall because of 
unknown function 0 ( , )F x y , i.e. temperature in 
the fin ( , )U x y . That is why we will pay 
attention to the solution for the fin now. In the 
same way as for (20) we can rewrite the 
conjugations conditions in the form of BC on the left 
side of the rectangular fin: 
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Here the right hand side function of BC (25) has 
the form:  
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Then, similar as for the wall we can represent 
solution for the fin in following form: 
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 Here ( )i jλ κ  are the roots of the transcendental 
equations: 
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Using notation (21) and representation (27) we 
can easy obtain the following equation: 
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From (22) we obtain immediately similar 
representation for the ( , )F yδ : 
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Here we have introduced notation, similar to the 
second equation of the formula (28): 

0 0 0( , , , ) ( , , , ).x y G x y
x
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     (30) 

Now we substitute the representation (29) in the 
right hand side of formula (28) and we obtain 
following second kind Fredholm integral 
equation regarding the function 0 ( , )F yδ : 
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Here we have introduced following shorter 
denominations: 
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When solved integral equation (31) we 
immediately can obtain the temperature field in 
the wall from the representation (22). In its turn 
the representation (27) gives the temperature 
field in the fin. 
By the way, in all our papers [6]-[11] we restrict 
ourselves with homogeneous boundary 
conditions (15), (17)-(19).  
 
3.2 Solution of the General Problem (13)-(19) 
Here now will be considered general case of 
non-homogeneous environmental temperature: 
differential equations (3) with boundary 
conditions (4)-(12). The solution for the wall 
instead of (22) has form: 
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Here the known terms are joined together: 
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In the similar form we can represent solution for 
the fin. It looks as follow: 
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We obtain instead of formulae (28) and (29) 
following representations: 
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We have introduced following notations in (37): 

0 0 0
0

1( , ) ( , ),

1( , ) ( , ).

x y x y
x

x y x y
x

β
β

β
β

∂⎛ ⎞Ψ = − Ψ⎜ ⎟∂⎝ ⎠
∂⎛ ⎞Ψ = + Ψ⎜ ⎟∂⎝ ⎠

 

We obtain following non-homogeneous 
Fredholm integral equation of 2nd kind in the 
same way as equation (31) in sub-section 3.1:  
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F y y K y F dδ υ δ υ υ= −Φ + ∫     (38) 

Here  

0 0
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This Fredholm integral equation of 2nd kind has 
continuous kernel and it has unique solution, 
see, e.g., [21]. Again, when solved integral 
equation (38) we can obtain immediately from 
(33) the temperature field in the wall. Then first 
formula (37) allows finding the 
combination ( , )F x δ . In its turn formula (35) 
gives the temperature field in the fin. 
We finish this part of our paper with the 
following two remarks. Firstly, the last problem 
(with non-homogeneous environment 
temperatures) and its solution allow conjugating 
temperature field with hydrodynamic (motion of 
fluid or gas between two fins and along the left 
edge of the wall). Secondly, if we had 3rd type 
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BC instead of the BC (1), we would have had 
full three-dimensional problem.    
 
 
4   Conclusions 
We have constructed several exact three 
dimensional analytical solutions for a one element of 
periodical system with rectangular fin where the 
wall and the fin consist of materials which have 
different thermal properties. These solutions are in 
the form of Fredholm integral equation of 2nd 
kind and has continuous kernel. They are simpler 
then the one obtained in our paper [11]. They allow 
passing over from problems for individual fins to 
problems for fins arrays, which will be considered in 
the part 2 of this paper.  
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