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Abstract: We consider a stationary distribution of a finite, irreducible, homogeneous Markov chain. Our aim is to
perturb the transition probabilities matrix using approximations to find regions of feasibility and optimality for a
given basis when the chain is optimized using linear programming. We also explore the application of perturbations
bonds and analyze the effects of these on the construction of optimal policies.
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1. Introduction

A perturbation in a Markov chain can be referred
as a slight change in the entries of the correspond-
ing transition stochastic matrix, resulting in structural
changes in the underlying process, for example, sets
of states which in the original case do not communi-
cate, do so after a perturbation is imposed. Also, pas-
sages times that originally were not well defined ran-
dom variables, may become so after the perturbation.
In this sense, a square matrix is stochastic if its entries
are real and non-negative and the sum of the entries in
each row is equal 1.

Their importance is related with the dynamics that
these represent, particularly, the singularly perturbed
Markov chains have a few time scales. One time scale
may correspond to the more frequent transitions oc-
curring among states which communicate also in the
unperturbed case. In this document we are interest-
ed in the matrix perturbation procedure from a proba-
bilistic point of view, where the perturbation quantity
of the original stochastic matrixφ, can be approximat-
ed by a given matrixA such thatφ(ε) = φ + A(ε) =
φ+ εA.

Given the perturbedφ(ε) matrix we approach the pro-
blem of analyzing the effects of the perturbation on
the optimal policies of a Markovian decision process,
sustained in the Frobenius norm ofφ(ε). The marko-
vian process describes the productive and reproduc-
tive lifespan of herd sows, where, under an infinite
planning horizon, the linear programming (LP) is used

as an optimization technique.

This investigation constitutes an alternating focus to
the problem of replacement management of animals
in a herd, sows in this case. This consists in to con-
sider at regular time intervals whether it should be
kept to a sow in the herd for an additional period or
it should be replace by a new animal (gilt) and to
optimize the expected return associated to the deci-
sions made during the process (Tijms, 1994). Several
authors have approached this problem with Marko-
vian models or some of their variants, see for in-
stance, Howard (1960), van der Wal and Wessels
(1985), White and White (1989), Kristensen (1996)
and Plá (2002). With regard to the perturbation the-
ory of Markov chain matrices there are several au-
thors that have focused the problem from different
view points, for example V. Ejov et al. (2004), proved
that the Hamiltonian Cycles of a graph can be charac-
terized as the minimizers of a functional based on the
fundamental matrices of Markov chains induced by
deterministic policies in a suitably perturbed Markov
decision processes. For more complete bibliography
on the subject see Avrachenkov et al. (2002) In this
document we are devoted to study the properties of
the transition probabilities matrix of the process when
this is perturbed in random form, and, to analyze the
effects of such perturbations on the optimal policies
of the process. To illustrate our proposal we consider
the sow replacement problem developed in Plá, Pomar
and Pomar (2003). The system consist in a sow farm
where sows are allowed to reach nine reproductive cy-
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cles as a maximum and at the end of each cycle, two
actions can be taken: keep or replace. The problem
is represented as a regular Markov decision process
and solved using a linear programming model. Tran-
sition probabilities and reward values are arbitrary but
near to what are observed in actual systems; the cor-
responding transition probabilities matrix is perturbed
using the mentioned techniques and the optimal poli-
cies are characterized in terms of these. We report the
theoretical and practical results.

2. Preliminary
A stochastic process{M(n)}n=0,1,... with finite

state spaceZ = {z1, . . . , zS} is a Markov chain with
discrete time, if for alln ∈ N and allw0, . . . , wn ∈ Z

P (M(0) = w0,M(1) = w1, . . . ,M(n) = wn) =

P(M(0) = w0) γ(i, i− 1),

whereγ(i, i−1) = Πn
i=1P(M(i) = wi |M(i−1) =

wi−1)

Consider a Markov chain withS statesz1, . . . , zS
where, in each stagek = 1, 2, . . . , the analyst should
made a decisiond, among ξ possible. Denote by
z(n) = zi andd(n) = dk the state and the decision
made in stagen respectively, then the systems moves
at the next stage,n+ 1, into the statezj with perhaps,
an unknown probability given by

φk
ij = P [z(n+ 1) = zj | z(n) = zi, d(n) = dk] .

When the transition occurs, it is followed by the re-
ward rk

ij, and the payoff at statezi after the deci-

sion dk is made is given byψk
i =

∑S
j=1 φ

k
ij r

k
ij .

Since we assume that for every policyϑ(k1, . . .kS),
the corresponding Markov chain is ergodic, then, the
steady state probabilities of this chain are given by
φϑ

i = limn→∞ P [Z(n) = zi], i = 1, . . . , S, and the
problem is to find a policyϑ for which the expected
payoff

Ωϑ =
S∑

i=1

φϑ
i ψ

k
i , (1)

is maximum.

When the model involves an infinite horizon, the LP
can be used to optimize (1), i.e., if the termination
stage is unknown, usually the problem is described by
an infinite planning horizon where the numberN of
stages is considered infinite. In this case the optimal

policy is constant over stages and the objective func-
tion is given by

gϑ =
S∑

i=1

φϑ
i r

ϑ
i , (2)

whereφϑ
i is the limiting state probability under the

policyϑ (i.e., when the policy is kept constant over an
infinit number of stages). This criterion maximizes the
average net revenues per stage. Thus, the LP problem
associated to the chain is (Kristensen 1996).

max
∑S

i=1

∑ξ
d=1 rd

i xd
i

Subject to

∑ξ
d=1 xd

i −
∑S

j=1

∑ξ
d=1 φd

i x
d
j = 0,

∑S
i=1

∑ξ
d=1 xd

i = 1, xd
i ≥ 0,

(3)

whered is optimal in statei if and only if xd
i from the

optimal solution is strictly positive, and thexd
i are the

unconditional steady-state probabilities that the sys-
tem is in the statei and decisiond is made.

A replacement policy is a specification of a sequence
of “keep” or “replace” actions, one for each period.
An optimal policy is a policy that achieves the greatest
reward (or the smallest total net cost) of ownership
over the entire planning horizon. In Pérez et al. (2006)
is demonstrated that the problem (3) has a degenerate
solution.

3. The approximations method

In this section we discuss the following question:
given the Markov chain of the problem (2), which is
optimized using LP, ¿how affects to the optimal policy
of the chain a perturbation on the optimal solution of
the LP problem?.

To begin this discussion, consider the general LP pro-
blem:

minimize f(x) = ct x
subject to Ax = δ, x ≥ 0, Am×n,

c, x ∈ Rn, δ ∈ Rm
(4)

The numberρ of basic feasible solutions that the pro-
blem has, is less than or equal to(n

m), andBm×m (sub-
matrix of A) is a feasible basis of the LP model if
B ∈ S, where S = {Bi ∈ A : B−1

i δ ≥ 0 }.
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SupposeB is perturbed to a matrix̃B, that is the transi-
tion probability matrix of ann finite state, irreducible,
homogeneous Markov chain as well. Denoting the sta-
tionary distribution vector ofB by x?, and ofB̃ by x̃,
the goal is to describe the change−dx = (x? − x̃) in
the stationary distribution in terms of the changesdB
using an approximations method. In this sense,x? and
x̃ satisfy the systems

x? B = x?, x? > 0, x? e = 1

and
x̃ B̃ = x̃, x̃ > 0, x̃e = 1

wheree is the column vector of all ones.

The approximations method used can be described as
follows. Given a basisB ∈ S, we difference the ma-
trix equationBx = b, and obtain,dBx + Bdx = 0,
i.e.,dx = −B−1dB x.

Let dij ∈ dB be the perturbation onbij ∈ B, and
x? an optimal solution of the problem (4). Defining
f? = f(x?) = ctx? ←min, the resulting perturbation
b̃ij ∈ B̃ can be written as

b̃ij = bij + dij , (5)

and therefore,
x̃ = x? + dx, (6)

constitutes a perturbated solution around ofx?. Thus,

f̃ = f(x̃) = f? + ctdx, (7)

is a new solution, not necessarily feasible (sinceAx̃ =
δ+Adx) of the problem (4) evaluated in the perturbed
point x̃. This is also an approximate solution to the
modified problem

minimize f(x) = ct x

subject to Ã x = δ, x ≥ 0, Ãm×n,

c, x ∈ Rn, δ ∈ Rm
(8)

whereÃ is the resulting matrix after incorporating the
perturbationsdij in B. Let x̂ be an optimal solution of
the problem (8), then we can write

x̂ = x̃+ ε, ε ∈ Rn, (9)

and there holds

f̂ = f(x̂) = f̃ + ct ε , (10)

The quantities,̃x+ε and,f̃+ct ε can be viewed as ap-
proximations tôx andf̂ respectively, andε is an error
measure of the approximation. Naturally, we would
want an error zero.

To evaluate the existent relationships among theε
quantity and the matrixdB we use the Frobenius norm
‖ · ‖F of dB, and the Euclidian norm ofε defined as

‖ dB ‖2F = Trace(dBt dB),

and

‖ ε ‖2 = (x̂− x̃)t(x̂− x̃)

(11)

3.1. Perturbation bounds
The norm perturbation bound used in this section is of
the following form (Schweitzer 1968)

‖ x? − x̃ ‖1 ≤ ‖ Z ‖∞ ‖ dB ‖∞, (12)

where‖ x? − x̃ ‖1 is the 1-norm of the vectorx? − x̃
defined as the absolute entry sum,‖ ϕ ‖∞ is the∞-
norm of the matrixϕ defined as the maximum abso-
lute row sum, andZ is the fundamental matrix asso-
ciated to the matrixB. Z has the form

Z ≡
[
I − B + e (x?)t

]−1
, (13)

Likewise, the stationary distribution vector̃x, of the
perturbed matrixdB can be expressed in terms ofx?

and the fundamental matrixZ as (Kemeny and Snell
1960)

(x? − x̃)t = x̃t dBZ (14)

Using (14) we can now formalize an important result
that relates tôf andx̃ with f?.

Pre multiplying both sides of (14) byc we have

ct x? − ct x̃ = ctZtdBtx̃

or
−ct dx = ctZtdBtx̃

i.e.,
f? − f̃ = ctZtdBtx̃

equivalently

f̃ = f? − ctZtdBtx̃, (15)

using (10) we have finally

f̂ = f? − ct [Zt dBt x̃+ ε], (16)
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3.2. The LP model of dij

To evaluate the permissible maximum value for
each perturbation, we propose the alternative LP pro-
blem

Maximize ϕ(d) = {de : −B dB dx ≤ x?} , (17)

wheree ∈ Rζ, ζ is the number of elements of the
matrix B that will be perturbed, andd = dij is the
perturbations vector. If the problem (4) has an opti-
mal solution, then, the problem (12) also has an opti-
mal solution because the inequality allows to slack the
constrains.

In this sense, an important problem for this kind of
perturbations consists on finding a feasible regionϕ
for the perturbed basis̃B. To solve this, we define
the functionsg(dxi) = −CtB−1

i dB x?, i = 1 . . . , ρ.
Then, a feasible region for̃B is given by

ϕ = {dij ∈ g(dxk) :

g(dxk) ≤ g(dxi), i = 1, 2 . . . , ρ}, (18)

where the basisBk used to evaluateg(dxk) is that on
which the perturbation will be made.

4. Numerical example

Consider the following transition probabilities
matrices reported in Pla et al. (2003), which represent
a markovian decision process withD = 2:




0 1 0 0 0 0 0 0 0 0
0.30 0 0.70 0 0 0 0 0 0 0
0.25 0 0 0.75 0 0 0 0 0 0
0.20 0 0 0 0.80 0 0 0 0 0
0.20 0 0 0 0 0.80 0 0 0 0
0.20 0 0 0 0 0 0.80 0 0 0
0.20 0 0 0 0 0 0 0.80 0 0
0.25 0 0 0 0 0 0 0 0.75 0
0.25 0 0 0 0 0 0 0 0 0.75
1 0 0 0 0 0 0 0 0 0




︸ ︷︷ ︸
d = 1 (m ≡ keep)




1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0




︸ ︷︷ ︸
d = 2 (r ≡ replace)

The corresponding LP problem is to maximize the ob-
jective functionf(y) given by1:

190y1m + 226y2m + 232y3m + 202y4m + 202y5m +
1The cost coefficients are arbitrary.

202y6m + 202y7m + 202y8m + 202y9m − 200Br

subject to

y1m + y1r − Bm = 0, y2m + y2r − 0.70y1m = 0,
y3m + y3r − 0.75y2m = 0, y4m + y4r − 0.8y3m = 0,
y5m + y5r − 0.8y4m = 0, y6m + y6r − 0.8y5m = 0,
y7m + y7r − 0.8y6m = 0, y8m + y8r − 0.75y7m = 0,
y9m + y9r − 0.75y8m = 0, Br + Bm − y1r − y2r−
y3r − y4r − y5r − y6r − y7r − y8r − y9r − 0.3y1m−
0.25y2m − 0.2y3m − 0.2y4m − 0.2y5m − 0.2y6m−
0.25y7m − 0.25y8m − y9m = 0, Br + Bm + y1m+
y2m + y3m + y4m + y5m + y6m + y7m + y8m+
y9m + y1r + y2r + y3r + y4r + y5r + y6r + y7r+
y8r + y9r = 1
y1m, y2m, y3m, y4m, y5m, y6m, y7m, y8m, y9m ≥ 0,
y1r, y2r, y3r, y4r, y5r, y6r, y7r, y8r, y9r, B ≥ 0.

The optimal solution and the basic variables of
the inverse basis are (presented in order):Bm =
0.2106, y1m = 0.2106, y2m = 0.1474, y3m =
0.1105, y4m = 0.08847, y5m = 0.07078, y6m =
0.05662, y7m = 0.04529, y8m = 0.03397, y9m =
0.02548, S10 = 0. The optimal objective func-
tion is f? = 163.7765. The basis B that
will be perturbed is formed by the columns:
y1m, y2m, y3m, y4m, y5m, y6m, y7m, y8m, y9m, Bm,10

and

‖ dB ‖2F = (d21 − 1)2 + (d32 − 1)2 + (d43 − 1)2+
(d54 − 1)2 + (d65− 1)2 + (d76− 1)2 + (d87− 1)2+
(d98 − 1)2 + d2

21 + d2
32 + d2

43 + d2
54 + d2

65 + d2
76 +

d2
87 + d2

98.

Note that the convex function‖ dB ‖2F achieves its
minimum in d?

ij = 0.5, i = 2, . . . , 9, j = 1, . . . , 8,
and‖ dB? ‖F = 2. In this point,‖ ε ‖= 0.7280.

By (12) we have‖ Z ‖∞= 25.8248, ‖ dB ‖∞= 4,
and‖ x? − x̃ ‖1= 0.9993

Usingx as the optimal solution of the LP problem, the
perturbed solutioñx ≈ x? − B−1dBx is given by

B̃m ≈ 0.2106− 0.1741d21 − 0.1729d32 − 0.1124d43 − 0.0763d54

−0.0530d65 − 0.0344d76 − 0.0208d87 − 0.0095d98;
ỹ1m ≈ 0.2106− 0.1741d21 − 0.1729d32 − 0.1124d43 − 0.0763d54

−0.0530d65 − 0.0344d76 − 0.0208d87 − 0.0095d98;
ỹ2m ≈ 0.1474 + 0.0886d21 − 0.1210d32 − 0.0787d43 − 0.0534d54

−0.0371d65 − 0.0241d76 − 0.0146d87 − 0.0066d98;
ỹ3m ≈ 0.1105 + 0.0665d21 + 0.1198d32 − 0.0591d43 − 0.0401d54

−0.0278d65 − 0.0180d76 − 0.0109d87 − 0.0050d98

ỹ4m ≈ 0.0884 + 0.0532d21 + 0.0958d32 + 0.1000d43 − 0.0320d54

−0.0222d65 − 0.0144d76 − 0.0087d87 − 0.0039d98

ỹ5m ≈ 0.0707 + 0.0425d21 + 0.0766d32 + 0.0800d43 + 0.0848d54

−0.0178d65 − 0.0115d76 − 0.0070d87 − 0.0032d98
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ỹ6m ≈ 0.0566 + 0.0341d21 + 0.0612d32 + 0.0641d43 + 0.0678d54

+0.0741d65 − 0.0092d76 − 0.0056d87 − 0.0025d98

ỹ7m ≈ 0.0452 + 0.0271d21 + 0.0490d32 + 0.0512d43 + 0.0542d54

+0.0593d65 + 0.0632d76 − 0.0044d87 − 0.0020d98

ỹ8m ≈ 0.0339 + 0.0204d21 + 0.0368d32 + 0.0384d43 + 0.0407d54

+0.0444d65 + 0.0474d76 + 0.0532d87 − 0.0015d98

ỹ9m ≈ 0.0254 + 0.0153d21 + 0.0275d32 + 0.0288d43 + 0.0304d54

+0.0333d65 + 0.0356d76 + 0.0399d87 + 0.0440d98

S̃10 ≈ 0.9400

For the previously developed system we use the
perturbations:d21 = 0.20, d32 = 0.20, d43 =
0.12, d54 = 0.14, d65 = 0.18, d76 = 0.10, d87 =
0.15, d98 = 0.20; and from these, we obtaiñf =
184.9326, ctdx = 21.2314.

Similarly, the optimal solution x̂ of the per-
turbed problem is: (Bm = 0.3062, y1m =
0.3062, y2m = 0.1531, y3m = 0.0842, y4m =
0.0572, y5m = 0.0377, y6m = 0.0234,
y7m = 0.0164, y8m = 0.0098, y9m = 0.0054)
and f̂ = 142.6643. Using (9) we get theε value
defined as:(−0.0160, −0.0160,−0.0303,−0.0112,
−0.0019, 0.0062, 0.0141, 0.0160, 0.0179, 0.0103),
and the inner productctε = −42.2814. Note that
these values satisfy the equations (6), (7), (9) y (10).

The Frobenius norm, thẽx− x? norm, theε error and
other parameters were evaluated for different values of
dij (usingdij = dkl, i = 2, . . . , 9, j = 1, . . . , 8). In
table 1 we summarize our findings and figure 1 sketch
the numerical results. Table 2 shows the samples ofx̂,
x?, dx andε2 for the proposeddij .

dij ‖ dB ‖F ‖ x̃ − x? ‖ ‖ ε ‖ f̃ f̂
0 0 0 0.4704 163.7765 95.1337

0.1 2.5612 0.1148 0.5219 177.2500 102.0440
0.2 2.3323 0.2296 0.5842 190.7235 109.6893
0.3 2.1540 0.3443 0.6337 204.1971 240.1141
0.4 2.0396 0.4591 0.6841 217.6704 265.7273
0.5 2 0.5739 0.7280 231.1442 291.1452
0.6 2.0396 0.6887 0.7633 244.6177 315.0898
0.7 2.1540 0.8035 0.7904 258.0910 335.7125
0.8 2.3323 0.9183 0.8140 271.5647 351.2073
0.9 2.5612 1.0330 0.8423 285.0382 360.8219
1.0 2.8284 1.1478 0.8835 298.5116 365.4715

Table 1: Comparative aspects of the proposeddij

Let us consider the linear programming mod-
el defined in (12). In our example it become
maximize= d21+d32+d43+d54+d65+d76+d87+d98

Subject to
0.1741d21 + 0.1729d32 + 0.1124d43 + 0.0763d54

+0.0344d76 + 0.0208d87 + 0.0095d98 ≤ 0.2106
−0.0886d21 + 0.1210d32 + 0.0787d43 + 0.0534d54

+0.0371d65 + 0.0180d76 + 0.0109d87 + 0.0050d98

≤ 0.1474
−0.0665d21 − 0.1198d32 + 0.0591d43 + 0.0401d54

+0.0278d65 + 0.0180d76 + 0.0109d87 + 0.0050d98

≤ 0.1105

Fig 1: Functionsf?, f̃ andf̂ generated from the proposeddij

−0.0532d21 − 0.0958d32 − 0.1d43 + 0.0320d54

+0.0222d65 + 0.0144d76 + 0.0087d87 + 0.0039d98

≤ 0.0884
−0.0425d21 − 0.0766d32 − 0.0800d43 − 0.0848d54

+0.01784d65 + 0.0115d76 + 0.0070d87 + 0.0032d98

≤ 0.0707
−0.0341d21 − 0.0612d32 − 0.0641d43 − 0.0678d54

−0.0741d65 + 0.0092d76 + 0.0056d87 + 0.0025d98

≤ 0.0566
−0.0271d21 − 0.0490d32 − 0.0512d43 − 0.0542d54

−0.0593d65 − 0.0632d76 + 0.0044d87 + 0.0020d98

≤ 0.0452
−0.0204d21 − 0.0368d32 − 0.0384d43 − 0.0407d54

−0.0444d65 − 0.0474d76 − 0.0532d87 + 0.0015d98

≤ 0.0399
−0.0153d21 − 0.0275d32 − 0.0288d43 − 0.0304d54

−0.0333d65 − 0.0356d76 − 0.0399d87 − 0.04407d98

≤ 0.0254, 0 ≤ dij ≤ 1, i = 2, . . . , 9, j = 1, . . . ,8

which solution isd21 = 0.1222, d32 = 0.0407, d43 =
0.3672, d54 = 1, d65 = 1, d76 = 1, d87 = 1, d98 =
1, ϕ(d?) = 5.5302. The corresponding Frobenius
norm is‖ dB ‖F = 2.6912, and‖ ε ‖= 0.8688.

5. Conclusion
The approximations method is a good alternative

to evaluate the sensitivity of the optimal solution in
a markovian decision process. The norm perturbation
bound associated to the fundamental matrix is a mea-
sure of the error made when changing the values of the
transition probabilities matrix. This method is promis-
ing when evaluating the changes in the entrances of
it, but considering now that these can be represented
like probabilitydensity functions making the pertinent
changes in the used norms.
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dij Bm y1m y2m y3m y4m y5m y6m y7m y8m y9m

0 x̂ 0.5 0.5 0 0 0 0 0 0 0 0
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx 0 0 0 0 0 0 0 0 0 0
ε2 0.0837 0.0837 0.0217 0.0122 0.0078 0.0049 0.0032 0.0020 0.0011 0.0006

0.1 x̂ 0.4736 0.4736 0.0473 0.0047 0.0004 0 0 0 0 0
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.0653 −0.0653 −0.0247 0.0025 0.0167 0.0244 0.0284 0.0297 0.0280 0.0255
ε2 0.1078 0.1078 0.0056 0.0117 0.0109 0.0090 0.0072 0.0056 0.0038 0.0025

0.2 x̂ 0.4444 0.4444 0.0889 0.0178 0.0036 0.0007 0.0001 0.0000 0 0
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.1308 −0.1308 −0.0494 0.0050 0.0335 0.0489 0.0568 0.0596 0.0560 0.0511
ε2 0.1329 0.1329 0.0001 0.0096 0.0140 0.0141 0.0128 0.0110 0.0081 0.0058

0.7 x̂ 0.2381 0.2381 0.1667 0.1166 0.0816 0.0571 0.0400 0.0280 0.0196 0.0137
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.4576 −0.4576 −0.1729 0.0176 0.1173 0.1710 0.1988 0.2085 0.1961 0.1786
ε2 0.2354 0.2354 0.0369 0.0001 0.0153 0.0340 0.0464 0.0079 0.0070 0.0058

0.8 x̂ 0.1876 0.1876 0.1501 0.1201 0.0960 0.0768 0.0614 0.0491 0.0393 0.0314
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.5230 −0.5230 −0.1976 0.0201 0.1340 0.1955 0.2272 0.2383 0.2241 0.2042
ε2 0.2500 0.2500 0.0401 0.0001 0.0159 0.0358 0.0494 0.0079 0.0070 0.0058

0.9 x̂ 0.1403 0.1403 0.1263 0.1136 0.1023 0.0920 0.0828 0.0745 0.0671 0.0604
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.5884 −0.5884 −0.2223 0.0226 0.1508 0.2199 0.2556 0.2680 0.2521 0.2297
ε2 0.2684 0.2684 0.0405 0.0003 0.0187 0.0394 0.0526 0.0079 0.0070 0.0058

1 x̂ 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000
x? 0.2106 0.2106 0.1474 0.1105 0.0884 0.0707 0.0566 0.0452 0.0339 0.0254
dx −0.6537 −0.6537 −0.2471 0.0252 0.1676 0.2444 0.2840 0.2978 0.2801 0.2552
ε2 0.2950 0.2950 0.0398 0.0012 0.0243 0.0462 0.0579 0.0079 0.0070 0.0058

Table 2: Some samples ofx̂, x?, dx andε2 for the proposeddij .
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