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Abstract: - The frequent pattern tree (FP-tree) is an efficient data structure for association-rule mining without 
generation of candidate itemsets. It, however, needed to process all transactions in a batch way. In addition to 
record insertion, record deletion is also commonly seen in real-application. In this paper, we propose the 
structure of prelarge trees for efficiently handling deletion of records based on the concept of pre-large itemsets. 
Due to the properties of pre-large concepts, the proposed approach does not need to rescan the original database 
until a number of records have been deleted. The proposed approach can thus achieve a good execution time for 
tree construction especially when a small number of records are deleted each time. Experimental results also 
show that the proposed approach has a good performance for incrementally handling deleted records. 
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1   Introduction 
Many algorithms for mining association rules from 
transactions were proposed, most of which were 
based on the Apriori algorithm [1], which generated 
and tested candidate itemsets level-by-level. This 
may cause iterative database scans and high 
computational costs. Han et al. proposed the 
Frequent-Pattern-tree (FP-tree) structure for 
efficiently mining association rules without 
generation of candidate itemsets [3]. It was 
condensed and complete for finding all the frequent 
patterns. The construction process was executed 
tuple by tuple, from the first transaction to the last 
one. Both the Apriori and the FP-tree mining 
approaches belong to batch mining. That is, they 
must process all the transactions in a batch way. In 
real-world applications, new transactions are usually 
inserted into databases incrementally. 

One noticeable incremental mining algorithm 
was the Fast-Updated Algorithm (called FUP), which 
was proposed by Cheung et al. [2] for avoiding the 
shortcomings mentioned above. Although the FUP 
algorithm could indeed improve mining performance 
for incrementally growing databases, original 
databases still needed to be scanned when necessary. 

In the past, Hong et al. thus proposed the 
pre-large concept to further reduce the need for 
rescanning original database [4]. A pre-large itemset 
was defined based on two support thresholds. The 

upper support threshold was the same as that used in 
the conventional mining algorithms. The lower 
support threshold defined the lowest support ratio for 
an itemset to be treated as pre-large. An itemset with 
its support ratio below the lower threshold was 
thought of as a small itemset. The algorithm did not 
need to rescan the original database until a number of 
new transactions had been inserted. Since rescanning 
the database spent much computation time, the 
maintenance cost could thus be reduced in the 
pre-large-itemset algorithm. 

Hong et al. also modified the FP-tree structure 
and designed the fast updated frequent pattern trees 
(FUFP-trees) to efficiently handle newly inserted 
transactions based on the FUP concept [5]. The 
FUFP-tree structure was similar to the FP-tree 
structure except that the links between parent nodes 
and their child nodes were bi-directional. Besides, the 
counts of the sorted frequent items were also kept in 
the Header_Table of the FP-tree algorithm.  

In this paper, we proposed the structure of 
Prelarge tree for handling the deletion of records 
based on the concept of pre-large itemsets [4]. A 
structure of prelarge tree is to keep not only frequent 
items but also pre-large items. Based on the pre-large 
itemsets, the proposed approach can effectively 
handle cases in which itemsets are small both in an 
original database and deleted records. The proposed 
algorithm does not require rescanning the original 
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databases to construct the prelarge tree until a 
number of deleted records have been processed. 
Experimental results also show that the proposed 
algorithm has a good performance for incrementally 
handling deleted records. 
 
2   Review of Related Works 
In this section, some related researches are briefly 
reviewed. They are the FUFP-tree algorithm and the 
pre-large-itemset algorithm. 
 
2.1 The FUFP-tree algorithm 
The FUFP-tree construction algorithm is based on the 
FP-tree algorithm [3]. The links between parent 
nodes and their child nodes are, however, 
bi-directional. Bi-directional linking will help fasten 
the process of item deletion in the maintenance 
process. Besides, the counts of the sorted frequent 
items are also kept in the Header_Table.  

An FUFP tree must be built in advance from the 
original database before new transactions come. 
When new transactions are added, the FUFP-tree 
maintenance algorithm will process them to maintain 
the FUFP tree. It first partitions items into four parts 
according to whether they are large or small in the 
original database and in the new transactions. Each 
part is then processed in its own way. The 
Header_Table and the FUFP-tree are 
correspondingly updated whenever necessary.  
 
2.2 The pre-large-itemsets algorithm  
Hong et al. proposed the pre-large concept to reduce 
the need of rescanning original database [4] for 
maintaining association rules. A pre-large itemset is 
not truly large, but may be large with a high 
probability in the future. A pre-large itemset is not 
truly large, but may be large with a high probability 
in the future. Two support thresholds, a lower support 
threshold and an upper support threshold, are used to 
realize this concept. The upper support threshold is 
the same as that used in the conventional mining 
algorithms. The support ratio of an itemset must be 
larger than the upper support threshold in order to be 
considered large. On the other hand, the lower 
support threshold defines the lowest support ratio for 
an itemset to be treated as pre-large. An itemset with 
its support ratio below the lower threshold is thought 
of as a small itemset. Pre-large itemsets act like 
buffers and are used to reduce the movements of 
itemsets directly from large to small and vice-versa.  

Considering an original database and some 
records to be deleted by the two support thresholds, 
itemsets may fall into one of the following nine cases 
illustrated in Figure 1. 
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Figure 1: Nine cases arising from and the original database and 

the deleted records 
 
Cases 2, 3, 4, 7 and 8 above will not affect the final 
association rules. Case 1 may remove some existing 
association rules, and cases 5, 6 and 9 may add some 
new association rules. If we retain all large and 
pre-large itemsets with their counts after each pass, 
then cases 1, 5 and 6 can be handled easily. Also, in 
the maintenance phase, the ratio of deleted records to 
old transactions is usually very small. This is more 
apparent when the database is growing larger. It has 
been formally shown that an itemset in case 9 cannot 
possibly be large for the entire updated database as 
long as the number of transactions is smaller than the 
number f shown below [4]: 
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where f is the safety number of deleted records, Su is 
the upper threshold, Sl is the lower threshold, and d is  
the number of original transactions.  
 
3   The Proposed Deletion algorithm 
A prelarge tree must be built in advance from the 
initially original database before the records are 
deleted from the original databases. Its initial 
construction is stated as follows. The database is first 
scanned to find the large items which have their 
supports larger than the upper support threshold and 
the pre-large items which have their minimum 
supports lie between the upper and lower support 
thresholds. Next, the large and the pre-large items are 
sorted in descending frequencies. The database is 
then scanned again to construct the prelarge tree 
according to the sorted order of large and pre-large 
items. The construction process is executed tuple by 
tuple, from the first transaction to the last one. After 
all transactions are processed, the prelarge tree is 
completely constructed. The frequency values of 
large items and pre-large items are kept in the 
Header_Table and Pre_Header_Table, respectively. 
Besides, a variable c is used to record the number of 
deleted records since the last re-scan of the original 
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database with d transactions. The details of the 
proposed algorithm are described below. 
 
The prelarge-tree deletion algorithm:  
INPUT: An old database consisting of (d-c) 

transactions, its corresponding 
Header_Table and Pre_Header_Table, its 
corresponding prelarge tree, a lower support 
threshold Sl, an upper support threshold Su, 
and a set of t deleted records. 

OUTPUT: A new prelarge tree after records is 
deleted by using the prelarge tree deletion 
algorithm.  

STEP 1: Calculate the safety number f of deleted 
records according to the following formula 
[4]:  

⎥⎦
⎥

⎢⎣
⎢ −

=
u

lu

S
dSSf )( . 

STEP 2: Scan the deleted records to get all the items 
and their counts.  

STEP 3: Divide the items in the deleted records into 
three parts according to whether they are 
large (appearing in the Header_Table), 
pre-large (appearing in the 
Pre_Header_Table) or small (not in the 
Header_Table or in the Pre_Header_Table) 
in the original database.  

STEP 4: For each item I which is large in the original 
database, do the following substeps (Cases 1, 
2 and 3): 
Substep 4-1: Set the new count SU(I) of I in 

the entire updated database as:  
                                      SU(I) = SD(I) - ST(I), 

where SD(I) is the count of I in 
the Header_Table (original 
database) and ST(I) is the count 
of I in the deleted records. 

Substep 4-2: If SU(I)/(d-c-t)≥ Su, update the 
count of I in the Header_Table 
as SU(I), and put I in the set of 
Reduced_Items, which will be 
further processed in STEP 6;  

Otherwise, if Su≥ SU(I)/(d-c-t) 
≥ Sl, remove I from the  
Header_Table, put I in the 
head of Pre_Header_Table 
with its updated frequency 
SD(I), and keep I in the set of 
Reduced_Items; 
Otherwise, item I is still 
small after the database is 
updated; remove I from the 
Header_Table and connect 
each parent node of I directly 

to its child node in the 
prelarge tree. 

STEP 5: For each item I which is pre-large in the 
original database, do the following 
substeps (Cases 4, 5 and 6): 
Substep 5-1: Set the new count SU(I) of I in 

the entire updated database 
as:  

                                 SU(I) = SD(I) - ST(I). 
Substep 5-2: If SU(I)/(d-c-t) ≥ Su, item I 

will be large after the 
database is updated; remove I 
from the Pre_Hedaer_Table, 
put I with its new frequency 
SD(I) in the end of 
Header_Table, and put I in 
the set of Reduced_Items;  
Otherwise, if Su≥ SU(I)/(d-c-t) 
≥ Sl, item I is still pre-large 
after the database is updated; 
update I with its new 
frequency SD(I) in the 
Pre_Header_Table and put I 
in the set of Reduced_Items; 
Otherwise, remove item I  
from the Pre_Header_Table. 

STEP 6: For each deleted record with an item J 
existing in the Reduced_Items, substract 1 
from the count of J node at the 
corresponding branch of the prelarge tree. 

STEP 7: For each item I which is neither large nor 
pre-large in the original database but small 
in the deleted records (Cases 9), put I in the 
set of Rescan_Items, which is used when 
rescanning the database in STEP 8 is 
necessary.  

STEP 8: If t + c≤  f or the set of Rescan_Items is null, 
then do nothing;  
Otherwise, do the following substeps for 
each item I in the set of Rescan_Items:  
Substep 8-1: Rescan the original database to 

decide the original count SD(I) 
of I. 

Substep 8-2: Set the new count SU(I) of I in 
the entire updated database as:  

                                          SU(I) = SD(I) - ST(I). 
Substep 8-3: If SU(I)/(d-c-t) ≥ Su, item I will 

become large after the 
database is updated; put I in 
the set of Branch_Items and 
insert the items in the 
Branch_Items to the end of the 
Header_Table according to 
the descending order of their 
updated counts; 
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Otherwise, if Su≥ SU(I)/(d-c-t) 
≥ Sl, item I will become 
pre-large after the database is 
update; put I in the set of 
Branch_Items, and Insert the 
items in the Branch_Items to 
the end of the 
Pre_Header_Table according 
to the descending order of 
their updated counts. 
Otherwise, do nothing. 

Substep 8-4: For each original transaction 
with an item J existing in the 
Branch_Items, if J has not 
been at the corresponding 
branch of the prelarge tree for 
the transaction, insert J at the 
end of the branch and set its 
count as 1; Otherwise, add 1 to 
the count of the node J. 

STEP 9: If t + c > f, then set d = d - t - c and set c = 0; 
otherwise, set c = t + c.  

In STEP 8, a corresponding branch is the branch 
generated from the large and pre-large items in a 
transaction and corresponding to the order of items 
appearing in the Header_Table and the 
Pre_Header_Table. After STEP 9, the final updated 
prelarge tree is maintained by the proposed algorithm. 
The records can then be deleted from the original 
database. Based on the prelarge tree, the desired 
association rules can then be found by the FP-Growth 
mining approach as proposed in [3] on only the large 
items. 
 
4   An Example 
In this session, an example is given to illustrate the 
proposed deletion algorithm for maintaining a 
prelarge tree when records are deleted. Table 1 shows 
a database to be used in the example. It contains 10 
transactions and 9 items, denoted a to i. 

Table 1: The original database in the example 
Old database 

TID Items 
1 b, c, e 
2 b, c, e, g 
3 a, b, d, e, h 
4 a, b, e, g, h 
5 a, e, g 
6 a, b, e 
7 b, d, e, g 
8 a, b, c, f 
9 a c, d, f 

10 c, f, i 
Assume the lower support threshold Sl is set at 30% 
and the upper one Su at 50%. Here, not only the 

frequent items are kept in the prelarge tree but also 
the pre-large items. For the given database, the large 
items are b, e, a and c, and the pre-large items are d, g 
and f, from which the Header_Table and the 
Pre_Header_Table can be constructed. The prelarge 
tree is then formed from the database, the 
Header_Table and the Pre_Header_Table. The 
results are shown in Figure 2. 
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Figure 2: The Header_Table, Pre_Header_Table and the prelarge 
tree constructed 

Assume the last three records (with TID 8 to 10) are 
deleted from the original database. The proposed 
prelarge-tree maintenance algorithm proceeds as 
follows. The variable c is initially set at 0. 
  
STEP 1: The safety number f for deleted records is 
calculated as: 

.4
5.0

10)3.05.0()(
=⎥⎦
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⎢ −
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STEP 2: The three records are first scanned to get the 
items and their counts.  

STEP 3: All the items a to i are divided into three 
parts, {a}{b}{c}{e}, {d}{f}{g}, and {h}{i} 
according to whether they are large 
(appearing in the Header_Table), pre-large 
(appearing in the Pre_Header_Table) or 
small in the original database.  

STEP 4: The items in the deleted records which are 
large in the original database are first 
processed. In this example, items a, b, c 
and e(the first partition) satisfy the 
condition and are processed. Take item a as 
an example to illustrate the substeps. The 
count of item a in the Header_Table is 5, 
and its count in the deleted records is 2. 
The new count of item a is thus 5 - 2 (= 3). 
The new support ratio of item a is 
3/(10-0-3), which lies between 0.3 and 0.5. 
Item a is removed from the Header_Table 
and put into the head of the 
Pre_Header_Table with its updated 
frequency value and into the set of 
Reduced_Items. The new count of item c is 
thus 5 - 3 (= 2). The new support ratio of 
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item c is 2/(10-0-3), which lower than 0.3. 
Item c will become small after database is 
updated. The item c is thus removed from 
the Header_Table and prelarge tree. The 
new count of item b is 7 – 1 (= 6). Item b is 
thus still a large item after database is 
updated. The frequency value of item b in 
the Header_Table is thus changed as 6, and 
item b is then put into the set of 
Reduced_Items. Item e is similarly 
processed. After STEP 4, the 
Reduced_Items = {a, b, e}. 

STEP 5: The items in the deleted records which are 
pre-large in the original database are 
processed. They include items d, f and g. 
Take item d, f and g as an example to 
illustrate the substeps, respectively. The 
count of item d in the Pre_Header_Table is 
4, and its count in the deleted records is 1. 
The new count of item d is thus 4 - 1 (= 3). 
The new support ratio of item d is 
3/(10-0-3), which lies between 0.3 and 0.5. 
Item d is thus still a pre-large item after the 
database is updated. The frequency value 
of item d in the Pre_Header_Table is thus 
changed as 4, and item d is then put into the 
set of Reduced_Items. The count of item f 
in the Pre_Header_Table is 3, and its count 
in the deleted records is 3. The new count 
of item f is thus 3 - 3 (= 0). The new support 
ratio of item f is then 0/(10-0-3), which is 
smaller than 0.3. Item f will become small 
after database is updated. Item f is thus 
removed from the Pre_Header_Table and 
from the prelarge tree. The count of item g 
in the Pre_Header_Table is 4, and its count 
in the deleted records is 0. The new count 
of item g is thus 4 - 0 (= 4). The new 
support ratio of item g is then 4/(10-0-3), 
which larger than 0.5. Item g will become 
large items after database is updated. Item 
g is removed from the Pre_Header_Table 
and put in the end of Header_Table with its 
new frequency. The frequency value of 
item g in the Header_Table is thus changed 
as 4, and item g is then put into the set of 
Reduced_Items. After STEP 5, 
Reduced_Items = {a, b, d, e, g}. 

STEP 6: The prelarge tree is updated according to the 
deleted records with items existing in the 
Reduced_Items. In this example, 
Reduced_Items = {a, b, d, e, g}. The 
corresponding branches for the deleted 
records with any items in the set of 
Reduced_Items are shown in Table 2. 

Table 2: Three partitions of the items from the deleted records 
TID Items Corresponding branches 

8 a, b, c, f b, a 
9 a, c, d, f a, d 

10 c, f, i ψ 
The first branch shares the same prefix (b, a) as the 
current prelarge tree. The count for item b and a are 
then substracted by 1 since they have to be deleted 
from the previous prelarge tree after database is 
updated. The same process is then executed for 
another branch. The final results after STEP 6 are 
shown in Figure 3. 
 

Header_Table

Item Frequency Head 

b          6
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Pre_Header _able
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e:6
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Null
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Figure 3: The Header_Table, the Pre_Header_Table and the 
prelarge tree after STEP 6 

STEP 7: Since the item h and i is neither large nor 
pre-large in the original database (not 
appearing in the Header_Table and in the 
Pre_Header_Table), and small in the 
deleted records, it is put into the set of 
Rescan_Items, which is used when 
rescanning in STEP 7 is required. After 
STEP 7, Rescan_Items = {h, i}. 

STEP 8: Since t + c = 3 + 0 < f (= 4), rescanning the 
original database is unnecessary. Nothing is 
done in this step.  

STEP 9: Since t (= 3) + c (= 0) < f (= 4), set c = t + c 
= 3 + 0 = 3. 

After STEP 9, the prelarge tree is updated. Note 
that the final value of c is 3 in this example and f - c = 
1. This means that one more record can be added 
without rescanning the original database for Case 9. 
Based on the prelarge tree shown in Figure 5, the 
desired large itemsets can then be found by the 
FP-Growth mining approach as proposed in [3] on 
only the large items.  
 
5   Experiments 
Experiments were made to compare the performance 
of the batch FP-tree construction algorithm, the 
FUFP-tree deletion algorithm and the Prelarge-tree 
deletion algorithm for record deletion. The 
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experiments were performed in C++ on an Intel x86 
PC with a 3.0G Hz processor and 512 MB main 
memory and running the Microsoft Windows XP 
operating system. A real dataset called BMS-POS [7] 
were used in the experiments. This dataset was also 
used in the KDDCUP 2000 competition. The 
BMS-POS dataset contained several years of 
point-of-sale data from a large electronics retailer. 
Each transaction in this dataset consisted of all the 
product categories purchased by a customer at one 
time. There were 515,597 transactions with 1657 
items in the dataset. The maximal length of a 
transaction was 164 and the average length of the 
transactions was 6.5. The transactions in the 
BMS-POS database were first used to construct an 
initial FP-tree. The minimum threshold was set at 1% 
to 5% for the three algorithms, with 1% increment 
each time. 2,000 transactions were then deleted from 
the database. For the deletion algorithm of prelarge 
tree, the upper minimum support threshold was set at 
1% to 5% (1% increment each time) and the lower 
minimum support threshold was set at 0.2%, 1.2%, 
2.2%, 3.2% and 4.2%, respectively. The execution 
times and the numbers of nodes obtained from the 
three algorithms were compared. Figure 4 shows the 
execution times of the three algorithms for different 
threshold values. 
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Fig. 4. The comparison of the execution times for different 
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The comparison of the numbers of nodes for the 

three algorithms is given in Figure 5.  
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It can be seen that the three algorithms 

generated nearly the same sizes of trees. The 

effectiveness of the Prelarge tree deletion algorithm 
is thus acceptable. 
 
6   Conclusions 
In this paper, we have proposed the prelarg-tree 
maintenance algorithm for record deletion based on 
the concept of pre-large itemsets. The prelarge-tree 
structure is used to efficiently and effectively handle 
new transactions. Using two user-specified upper and 
lower support thresholds, the pre-large items act as a 
gap to avoid small items becoming large in the 
updated database when transactions are deleted.  

Experimental results also show that the 
proposed prelarge-tree maintenance algorithm runs 
faster than the batch FP-tree and the FUFP-tree 
algorithm for handling deleted records and generates 
nearly the same number of frequent nodes as them. 
The proposed approach can thus achieve a good 
trade-off between execution time and tree 
complexity. 
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