
Self Checking Register File Using Berger Code

A. H. ABDULHADI ALI H. MAAMAR
Higher Institute of Electronics

Beni- Waled, LIBYA

Abstract: In recent years the complexity of digital systems has increased dramatically. Although
semiconductor manufacturers try to ensure that their products are reliable, it is almost impossible not to have
faults somewhere in a system at any given time. As a result, reliability has become a topic of major concern
to the designers and to the users of these systems. Unfortunately as the scale of integration has increased so
also has the occurrence of intermittent faults. The characteristics of these types of faults render them
undetectable by standard test strategies. This is particularly problematic with the wide use of complex
circuits in safety-critical applications. Ensuring the reliability of these systems is a major testing challenge.
The detection of intermittent faults requires the use of Concurrent Error Detection (CED) techniques, which
continually monitor the operation of the circuit. One method of implementing CED in VLSI/ULSI circuits is
through the use of information Redundancy or coding techniques. This paper investigates the use of Berger
code as a means of incorporating CED into a self checking register file.

Key-Words: Self checking, information redundancy, Berger code, register file, concurrent error detection.

1 Introduction
 The advances in VLSI/ULSI technology have
made possible many changes not only in
processor architecture but also in the amount of
hardware that can be integrated into a die
permitting the implementation of single chip
processor. Today, many of the applications which
VLSI/ULSI technology is used are deemed to be
'safety' critical, eg., life-support machines,
aerospace and petro-chemical industries, nuclear
reactor control, railway signaling, commerce and
banking etc. Although increased scales of
integration offers many advantages, these
complex circuits are more susceptible to transient
and intermittent faults, these faults are the most
frequently occurring faults in digital systems, it
has been reported [1] that 90% of VLSI system
failures are due to intermittent faults. With the
extensive use of these types of circuits in safety
critical applications, a major challenge which
must be addressed is the development of test
techniques to detect transient and intermittent
faults. Unfortunately the characteristics of this
type of fault, namely random occurrence and short
duration, render standard test strategies
ineffective. The detection of these types of faults
necessitates the use of a test strategy which
continuously monitors the operation of the circuit
and compares it with some known reference. This
approach is usually referred to as Concurrent
Error Detection (CED).
 Concurrent Error Detection is the process
of detecting errors at the same time as the
system is performing its normal operation.

CED can be achieved through the use of
'Redundancy'. Redundancy is the use of extra
recourses time, hardware, or data, beyond the
requirements of the unchecked system. There
are three types of Redundancy, namely,
Hardware Redundancy, Time Redundancy,
and Information Redundancy[2][3][4].
 Information redundancy (coding techniques)
has been identified as a viable mechanism for
implementing concurrent error detection (CED) in
VLSI circuits; several RISC processors
incorporating information redundancy schemes
have been designed and fabricated[5][6].
Invariably, the incorporation of CED schemes
incur penalties on a design in terms of area
overheads resulting from the additional hardware
and routing space necessary to implement the
scheme, the area overhead incurred is a function
of the number of the checkbits (extra bits added to
information bits) used in the coding scheme.
Amongst all of the separable codes used in CED
schemes, Berger code [7] is the least redundant
separable code capable of detecting all
unidirectional errors. The construction of the
code, and its error detection capabilities are
outlined below together with a design of a self
checking register file using the code.
 Register files are generally fast RAMS with
multiple read and write ports. The Register File is
used to minimize off-chip communications caused
by Load/Store instructions, reading an operand
from a register file inside the chip is much faster
then reading the same operand from off-chip
memory. Large register file increases the number

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 62

of operands that can be stored on-chip, which in
turn will increase the performance of the
processor. Two independent register files are
used, Data Register File (DRF) for storing
information bits, and Check Symbol Register File
(CSRF) to hold the check symbols of the
information bits. Since the code used for CED is a
separable code then it is possible to separate the
information part and the check symbol part of
each code word. Each file has its own address
decoding hardware. Thus addressing errors can be
detected by a mismatch between the new check
symbol generated for the data word read from the
DRF and its check symbol stored in the CSRF, the
probability of both address decoders being in an
error simultaneously with the same fault is very
low.

2 Berger code
Berger code[7] is an optimal separable code
which can detect all unidirectional errors. A
Berger code word of length n bits has I
information bits and k check bits, where
[k=log 2 (I+1)], n=I+k.
Berger codes are useful for encoding the
information bits in digital systems because:
1-They are separable codes. No extra decoders are
required to extract the information bits, when
needed for processing, from the code word.
2- They detect all unidirectional errors; these are
most likely to occur in digital systems.
3- They are optimal, in terms of the number of
check bits required for I information bits, among
all the separable codes that detect unidirectional
errors[8].
A code word is constructed by forming a binary
number corresponding to the number of ones in
the I information bits, and appending the bit-by-
bit complement of the binary number as check
bits to the information bits [9]. For example, if I =
1100101, k = [log 2 (7+1)] =3 so the Berger code
must have a length of 10 (7+3), k check bits are
derived as follows: Number of 1s in the
information bits = 4, Binary equivalent of 4 =100.
The bit-by-bit complement of 100 is 011, which
are the k check bits. Thus, the code word :
1100101 011. It should be clear from the above
discussion that the k check bits may be the binary
number representing the number of 0's in
information bits. Thus, the check bits for Berger
codes can be generated by using two different
schemes. The scheme that uses the bit-by-bit
complement of the binary number corresponding
to the number of 1's in the information bits, and
the other scheme, which uses the binary number
corresponding to the number of 0's in the

information bits as check bits. If the number of
information bits in a Berger code is I =2 k -1, k≥1,
then it is called a maximal length Berger code;
otherwise it is known as the non-maximal length
Berger code. For example, the Berger code
1100101011 is maximal length because k=3 and I
=7= (2 k -1), whereas 110100011 is non-
maximal length because k=3 and I=6≠ (2 k -1). [2.

3 Register File
Register File is used to minimize off-chip
communications caused by Load/Store
instructions, reading an operand from a register
file inside the chip is much faster then reading the
same operand from off-chip memory. Large
register files increase the number of operands that
can be stored on-chip, which in turn will increase
the performance of the processor. The size of the
register file is trade off between chip area and the
storage space, increasing the size horizontally
(increasing the number of bits in each register)
means more chip area needed to implement each
extra bit, the number of bits in each register
depends on the size of operand (data word) that
the ALU can process. When a coding technique is
used for error detection, not only the data word
has to be stored in the Register File, but also its
check symbol, consequently the horizontal size of
the register file not only depends on the size of the
data word, but also on the number of bits in the
check symbol, which also depends on the code
used. Increasing the register file vertically (adding
more registers to the register file), will increase
the size of the address decoders, requiring an
increase in chip area to implement the additional
registers and the extra hardware for the address
decoders. Two independent register files will be
designed. The Data Register File (DRF) for
storing information bits, and Check Symbol
Register File (CSRF) to hold the check symbols
of the information bits. Since the code used for
concurrent error detection is a separable code then
it is possible to separate the information part and
the check symbol part of each code word. Each
file has its own address decoding hardware. Thus
addressing errors can be detected by a mismatch
between the new check symbol generated for the
data word read from DRF and its check symbol
stored in the CSRF, since the probability of both
address decoders being in an error simultaneously
with the same fault is very low. The DRF consists
of 32 general purpose registers available to the
user, each register is 32 bits wide. The basic cell
used to build data register file comprises a 1-bit
register cell which has three ports, ports (A,B)
used as Read ports only, and port C which can be

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 63

used as a Write or a Read port. The Data Register
File communicates with other blocks in the chip
over three buses, each bus has its own address
decoder to select one register at a time, two
registers can be selected at a time for read
operations via two buses, also the contents of any
register can be read via two buses at a time, but it
is not possible to select one register for read and
write operation at the same time. Only one write
operation can be performed at a time to place
word into one of the registers of the DRF. Each
register has five input lines to control its
functions, these are: Register Read via bus A
(RDA), Register Read via bus B (RDB), Register
Read via bus C (RDC), Register Write via bus C
(RWC), and Clear Register (CLR), the CLR
control line is used to clear the contents of the
selected register to zeros.

3.1 Bus Checkers
 When data is to be moved from the register file
to the ALU via the bus, the data should
immediately be checked for any detectable errors.
This is carried out by the checker, which consists
of a check symbol generator for Berger Code, and
a Totally Self Checking (TSC) Two-Rail Checker
(TRC). The check symbol generator is a zero
counter as presented in [7], it counts the number
of zeros in the information bits of any information
word, and gives the number of zeros which
represents the check symbol. When the check
symbol becomes available it is then compared
with the stored check symbol for that particular
word for the checker used for either Bus A or Bus
B having been previously extracted from the
CSRF.
 When designing a circuit which incorporates a
concurrent error detection capability, the question
immediately arises regarding the number and
placement of the checkers; this is trade-off
between area and error latency time, that is the
delay between the error occurring and its
detection. The number of checkers is usually
equal to the number of the major buses used to
connect the main blocks together, for example if
two Buses (Bus A and Bus B) are used to move
data from DRF to the ALU, then two checkers are
needed, one checker for each bus. However, if
only one checker is used to check the two buses,
then only one operand can be checked and moved
from DRF to ALU at a time, consequently the
ALU cannot receive two operands in parallel and
the system works as if it has only a single bus
between DRF and the ALU. In this register file
only two checkers are used, one checker for each

bus, simultaneously checking the operands
moving from DRF to ALU via bus A and Bus B.
 Once the number of the checkers has been
decided upon, their placement in the circuit must
be considered. Figure 1 shows the checkers for
buses A and B being located between ports A and
B of the DRF and input latches A and B of the
ALU. This means that to move any operand from
the DRF to the ALU, the operand is moved first
from the DRF to the checker on the bus, if it is
error free then operand will be moved to the ALU
input latch connected to the same bus; however, if
an error is detected the operand will not be
transferred to the ALU input latch and an error
signal will be sent to the control unit to handle the
error. The advantage of this method is that faulty
data cannot be processed in the ALU. However, it
has the major disadvantage of introducing a delay
in the data transfer between DRF and the ALU.
Since the data will not be available to the ALU
until it has been processed by the checker, the
total process time will be checking time plus
ALU processing time. There is no requirement,
however, to directly check the operands to the
ALU, because if the ALU processes faulty
operands the result cannot affect any other blocks
in the circuit, as a data transfer from ALU cannot
be initiated unless the operands and output result
are error free; further more, since the ALU is a
combinational circuit any previous faulty
computation cannot affect the next operation.
 An alternative checker placement for buses A
and B is shown in figure 2, in which the checkers
and the ALU are connected in parallel, hence
overcoming the above delay penalty. To move the
operands from the DRF to the ALU, the operands
can be transferred directly into the input latch of
the ALU and at the same time a copy of the
operands is moved to the checkers, the ALU can
start processing the operands at the same time as
the checkers start to check the operands, if no
errors in the operands are detected, then the result
obtained from the ALU can be taken as result of
error free operands. The output result must be
checked against any error generated by ALU
circuit during processing, if the checkers detect an
error in the operands, an error signal will be
activated to stop the processor from passing the
result. Again the result of processing faulty data
cannot be propagated to other blocks in the circuit
since data transfer cannot be initiated unless
operands are fault free. The advantage of this
method is that the total processing time is only
equal to ALU Processing time, as the checking
and processing of the operands is done in parallel

.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 64

Figure 1 Bus Checkers located between the ALU and the Register File

Figure 2 Bus checkers and ALU connected in parallel

DRF

CSRF

ALU

Checker
B

Checker
A

TRC

TRC

DRF

ALU

Checker
A

Checker
B

CSRF

TRC

TRC

GO/STOP

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 65

3.2 Controlling the Register File
 The Register File which comprises the DRF
and CSRF, is controlled by set of signal lines,
which come from controller. The control lines
comprise: First a set of register select lines which
come from the address decoders; second, a set of
operation lines supplied by the Control Signal
Generator. Since the RF comprises two sub-
register files, both needs to receive,
simultaneously, the same control signals to
perform similar read operations in parallel in
order to extract of codeword (i.e. data plus check
symbol) from the RF. Furthermore in order to
permit simultaneous read or write operations in
both sub- register files, the DRF and CSRF
require their own set of three address decoders.
Operations on the DRF and CSRF are defined by
a set of ‘operation lines’. These operations are:-
Read Selected Register via bus A (RDA), Read
Selected Register via bus B (RDB), Write
Selected Register via bus C (WRC), and Clear
Selected Register (CLR). These operations can be
performed on any register in the RF. The contents
of any register can be read via bus A or B,
however a word can only be written into any
register in the RF via bus C. It is possible to read
the contents of any register via two buses at the
same time, although read and write operations
cannot be performed simultaneously on the same
register location. The contents of any register can
be forced to zero by the control signal CLR. To
read the contents of a register, the control unit
selected the register and the bus to be used (A or
B), then the Control Unit sends an DRA signal to
the RF, and the contents of the selected register in
DRF are gated to the selected bus and becomes
available to the destination block, at the same time
the check symbol of the data word is gated from
the selected register in CSRF to the corresponding
Check Symbol Bus.To write a word to a register
in the RF the address of the register is sent to bus
C address decoder (Bus C in the DRF, and Bus C
in the CSRF); consequently a write operation can
be performed via bus C only. After the DR is
selected, the data to be written into the selected
register is placed on bus C, the Control Unit sends
a WRC to the RF, after some delay the data on the
bus C is copied into the selected register. Clear
operation is used to clear the contents of any
register in the RF, bus C address decoder is used
to select the register to be cleared, then the
Control Unit sends the CLR signal to the RF, after
short delay the contents of the selected register is
forced to zero.

3.3 Implementation of the Register Files
 Two independent Register Files are
implemented. The Data Register File (DRF)
which holds the data words, and the Check
symbol Register File (CSRF) which stores the
Check Symbols of the data words, these are
shown in figures 3, 4 respectively. The two files
could have been implemented as a combined
32×38 bit file, requiring 3 decoders. However,
with this configuration faults in the address
decoder could remain undetected, since any
incorrectly selected data would be extracted with
its matching check symbol. To avoid this
situation, at the expense of using more area, two
separate files, 32x32 bits, and 32x6 bits, were
used, requiring 6 address decoders (three for each
file). With this configuration addressing errors can
be detected since these will be a miss match
between the extracted data and the check symbol.
The possibility of both decoders being in error
simultaneously is very low. The same basic cell is
used to build the DRF and the CSRF, that is, a 1-
bit three port register cell. In the DRF the cell is
used first to build a 4-bit register cell, which is
then cascaded eight times to built the 32-bit
Register. The CSRF simply comprises six single
bit cells. The control lines (RDA, RDB, RDC,
WRC, and CLR) are distributed to each register in
the file as shown in figure 5. The signals are
buffered using inverters, first the signal coming
from the address decoder is fed to two inverters,
and each inverter is then used to drive 4 other
inverters, each of which is used to buffer the
control signal to 4-bits of the 32-bit register. This
control signal buffering scheme ensures that each
bit of the register receives a sufficiently strong
control signal, in other words the Least and the
Most significant bits receiver the same strong
control signal from the address decoder associated
with a given bus. As the length of the register
used to build the CSRF is only 6-bits, then only
two cascaded inverters are used to buffer the
control signal and the output of the last inverter is
used to drive the 6-bit register. The two register
files receive control signals from their respective
controllers, that is the DRF receives the control
signals from the Information Block Controller,
and the CSRF receives the control signals from
the Checker Block Controller. Both controllers
perform the same operations (Read, Write or
Clear) at the same time, any mismatch in the two
control signals coming from the controllers,
produce two different operations, which can be
detected.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 66

32 x 32 bit Data Register File
DRF

Address Decoder Bus C

 RSC WRC

CLR

BUS A BUS C BUS B

A
ddress D

ecoder B
us A

A
ddress D

ecoder B
us B

RSA

RDA

RSB

RDB

32 x 6 bit Check Symbol Register
CSRF

Address Decoder Bus C

 CSRSC WRC

CLR

BUS A BUS C BUS B

A
ddress D

ecoder B
us A

A
ddress D

ecoder B
us B

CSRSA

 RDA

CSRSB

RDB

Figure 3 Data Register File (DRF)

Figure 4 Check Symbol Register File (CSRF)

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 67

One Register (32 bits) of the DRF

BUS A
Figure 5 32- bit register in the DRF

4 Bits 4 Bits 4 Bits 4 Bits 4 Bits 4 Bits 4 Bits 4 Bits

Reading Register 5 via Bus A

One Register (32 bits) of the DRF

Address Decoder Bus A

RSA (101) RDA

4 Conclusion
 The work in this paper is concerned with the
investigation of Berger code as a means of
integrating a Concurrent Error Detection (CED)
scheme into a VLSI circuit. Berger code has the
advantage that it can detect all unidirectional
errors The design of a Self-Checking Register File
using Berger code have been presented, the file is
self checking against errors affecting the
information bits and the checkbits. Since the code
used is a separable code then two seperate files
were designed (DRF for storing the infromation
bits, CSRF to hold the checkbits), each file has its
own address decoding hardware. Thus addressing
errors can be detected by a mismatch between the
stored checkbits and the generated checkbits for
the word read from the DRF. The penalty of using
two seperate files is the area overhead used for the
extra address decoders.

References
[1] J. Clary and R. Sacane," Self-Testing Computers",
IEEE Comp., vol.12,No.10, October 1979, pp. 49-59.
[2] Parag K. Lala "Self-Checking and Fault-Tolerance
Digital Design", Morgan Kaufmann Publisher, 2001.

[3] Subhasish Mitra, "Diversity Techniques for
Concurrent Error Detection", Technical Report, Center
for reliable computing, May 2000.
[4] Teijo Lehtonen, Juha Plosila, Jouni Isoaho, "On
Fault Tolerance Techniques towards Nanoscale
Circuits and Systems" Turku Center for Computer
Science, TUCS Technical Report, No 708, August
2005, Finland.
[5] Russell, G. and Elliot, I.D., “Design of Highly
Reliable VLSI Processors Incorporating Concurrent
Error Detection and Correction ” , Proceedings EURO
ASIC91, May 1991 Paris .
[6] A. Maamar, and G. Russell, "A 32-bit RISC
processor with concurrent error detection", Proc. 24th
Euromicro Conference, August 1998, Sweden, pp 461-
467.
[7] J.M. Berger, “ A note on error detection codes for
Asymmetric Channels ” , Information and Control, vol.
4, March 1961, pp68 – 73 .
[8] M. Oma'a, O. Losco, C. Metra, A. Pagni, " On the
Selection of Unidirectional Error Detecting Codes for
Self-Checking Circuits Area Overhead and
Performance Optimization", Proceedings of the 11th
IEEE International On-Line Testing Symposium
(IOLTS’05), 2005 IEEE
[9] M. A. Marouf and A. D. Friedman, "Design of Self-
Checking checker for Berger codes", IEEE transactions
on computers, Volume 42, Issue 8, August 1993.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 68

