
“MIB-16” FPGA BASED DESIGN AND IMPLEMENTATION OF A 
16-BIT MICROPROCESSOR FOR EDUCATIONAL USE 

 
ESMA ALAER, ALI TANGEL, MEHMET YAKUT 

Electronics and Communication Engineering 
Kocaeli University 

Muhendislik Fakultesi Veziroglu Yerleskesi 41040, Izmit 
TURKEY  

  
http://mf.kou.edu.tr/elohab 

 
Abstract: - This paper presents a design and FPGA implementation of a 16-bit microprocessor core, so called 
“MIB-16” using VHDL. The microprocessor can directly access to the memory which consists of 16-bit words, 
addressed by a 16-bit word-address. Instructions are all multiples of 16-bit words, and are stored in this 
memory. There are 16 general purpose registers (R0–R15), a program counter (PC) and a condition code 
register (CC). The microprocessor can execute 16 instructions such as add, subtract, multiply, divide, load and 
store. The frequency of the microprocessor is only 3 MHz for an operand such as add, subtract, multiply and 
divide and approximately 1.5 MHz for the operands, load and store due to the restrictions of the evaluation 
board, on which the system is implemented. The complete design is realized and verified on Xilinx Spartan-3 
Evaluation Board. “MIB-16” is suitable especially for educational purposes and for FPGA based industrial 
digital system-on-chip ASIC solutions as being an available basic processor core whenever needed. 
Key-Words: - Microprocessors, FPGA, VHDL, Digital Systems 
 
1  Introduction 
The increased complexity in electronic systems 
requires the development of design methodologies. 
For this reason, traditional methods of “use pencil 
and paper to design the circuit”, and “implement to 
do experiments” have been replaced with “define 
and synthesis” methods [1]. 
      These new methods have resulted in 
development of Hardware Description Languages 
(HDLs). Nowadays, VHDL (Very High Speed 
Integrated Circuit Hardware Description Language) 
has become one of the most popular hardware 
languages [2]. The source capacity (intensity) and 
the maximum signal frequency of the reconfigurable 
systems have been increased in paralel with the 
developments in technology [3]. 
     After 1990s, field programmable gate arrays 
(FPGAs) have also been popular in custom ASIC 
design world due to having the fastest time to 
market property. They also allow designer to 
combine macro cell designs to form digital system-
on-chip solutions. Nowadays, there are different 
design methods for a system implementation using 
FPGA architectures. HDLs are the most preferable 
methods among others due to resulting in reduced 
design period and cost [4]. FPGAs have especially 
led to the development of designs in high level 
description languages like VHDL or Verilog, which 
allow the designer to conceive the design at the level  

 
of RTL without reference to the final technology or 
vendor used for the final implementation[5].  
     The earliest studies on microprocessor designs 
go back to the invention of transistor in 1948s, and 
it has still been continiuing nowadays. The Intel’s 
first child, 4004 in 1971, was able to run at 740 KHz 
performance. However, recent microprocessor 
designs has reached the performance of over 3 Giga 
Hertz.  
     Several microprocessor designs based on FPGA 
are reported in the literature [3], [7], [8], [9].  In this 
study, a complete design of an FPGA based 16-bit 
microprocessor is presented especially for 
educational purposes. 
 
2 FPGA Based Processor Design Steps 
and Instruction Set 
Fig.1 shows the FPGA design flow in general for 
the FPGA ASIC solutions [6]. Fig.2 shows the 
architecture of the designed microcomputer in this 
study. The processor has 16-bit address bus and 16-
bit data bus. In addition, it has 16 general purpose 
registers, a program counter, and a 3-bit status 
register. Every word has 16-bit word length. 
    3-bit status register is updated after every 
arithmetic and logic operation. Z (zero) flag 
indicates if the result of an operation is zero. 
Similarly, N flag is for negative result. V flag is for 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    284



the indication of overflow situation if any. Fig.3 
shows the register structures of the designed 
processor. 
 

 
Fig.1 FPGA Design Cycle in general 
 

 
Fig.2  The Architecture Implemented 
      
 

 
Fig.3 Register Structures 
  
  The microprocessor has an external memory, 
which has 16 bit word-length and 16 bit address bus 
to store the instructions. All instructions have 16-bit 

length. The PC register contains the address of the 
next instruction to be executed. After each 
instruction word is fetched, the PC is incremented 
by one to point to the next word. The arithmetic and 
logic instructions are listed in Table 1. 
 
Table-1. Arithmetic and logic instructions 
Instruction Name Function Opcode 
Add Add r3← r1+r2 0000 
Sub Subtract r3 ← r1-r2 0001 
Mul Multiply r3← r1*r2 0010 
Div Divide r3 ← r1/r2 0011 
Addq Add quick r3← r1+i8 0100 
Subq Subtract 

quick 
r3 ← r1-i8 0101 

Mulq Multiply 
quick 

r3 ← r1*i8 0110 

Divq Divide 
quick 

r3 ← r1/i8 0111 

Land Logical 
AND 

r3←r1&r2 1000 

Lor Logical OR r3 ← r1!r2 1001 
Lxor Logical 

XOR 
r3← r1+r2 1010 

Lmask Logic Mask r3←r1&-r2 1011 
 
     Instruction set is divided into four sections which 
are 4-bit each. The first section is for opcode. r3 
shows the address of the location where the result is 
stored. r1 and r2 are source register addresses, and 
i8 is an immediate two-compliment integer operand. 

 
     Table 2 shows the load and store instructions. 
Load from memory and store into memory 
instructions have two formats depending on the 
length of the displacement address. The format for 
the long displacement is: 
 
 

Address :      
 
(Addres+1): 
  
The format for the short displacement is as 
follows: 
 
 

(Address) :   
r3 r1 i8 opcode

r3 r1 ignored opcode

r2/i8 r1 r3 opcode

15               12 11           8 7             4 3                  0      

     
 Address: 

15             12 11       8 7            4 3                   0      

     15              12 11        8 7            4 3                   0     

Displacement 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    285



The op field is the op-code, r3 specifies the register 
to be loaded or stored, r1is used as an index register, 
disp is a long immediate displacement, and i8 is a 
short immediate displacement. 
 

Table-2. Load and Store Instructions 
Instructions Name Function Opcode 

Ld Load r3 ←M[r1+disp16] 1100 

St Store M[r1+disp16] ← r3 1101 

Ldq Load quick r3 ← M[r1+i8] 1110 

Stq Store quick M[r1+i8] ←r3 1111 

 

3 Instruction Executions 
The I/O pin configuration for the microprocessor is 
shown in Fig.4 Firstly, the processor  puts the 
address information of the data to be reached in the 
memory to the address bus for READ operation. 
WE is kept at  low (logic “0”) in  this case.  If the 
data to be read is an instruction information, the 
FETCH is set to active. Secondly, the information is 
transferred to data bus. If the read operation is 
finished, READY signal is set to active. Otherwise 
READY signal is remained in passive mode until 
read operation is completed. 

 
Fig.4 Pin configuration of the designed 
microprocessor 
      
Fig.5 shows the signal waveforms for the READ 
operation. The clock frequency is set to 50 MHz 
which is the value on Spartan-3 board, on which the 
processor is implemented. For the WRITE 
operation, the memory address information of the 
data to be written is firstly transferred to the address 
bus. The FETCH signal is set to passive mode and 
WE is tied to high (logic “1”). Secondly, the data to 
be written is carried out to the data bus, then the 
WRITE operation starts. After write is completed, 
the READY is set to active. Fig.6 shows the signal 
waveforms for the WRITE operation. 
 

 
Fig.5 Signals for the READ operation 
 
 
 

 
Fig.6  Signals for the WRITE operation 
 
     If the ADD operation is taken as an example of 
the arithmetic operations, the process executes as 
follows: 
The microprocessor first reads the instruction for 
ADD operation from the opcode. Two data to be 
added are received from the defined registers, and 
then added. The resultant information is written in 
the defined register. The result is related to the flags 
accordingly. Fig.7 shows the Model Sim simulation 
code execution of the ADD operation. 
     Here, a_bus shows  the address of the next 
instruction to be executed. d_in  shows the input 
data bus of the microprocessor, which includes the 
instruction data. op1_bus and op2_bus indicates the 
data to be added,  reg_result indicates the result. The 
flags are kept in  alu_cc. 

  

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    286



 
Fig.7  Modelsim simulation of code execution for ADD operation 
 
4  Results and Conclusion 
A 16-bit microprocessor so called MİB_16 is 
designed using VHDL and also implemented on 
Xilinx Spartan-3 Evaluation board as shown in 
Fig.8.  Simulation and imlementation tools used are 
Xilinx ISE 6.3i and Model Sim 6.0. There were 
some limitations encountered during the uploading 
and testing of the processor due to  evaluation board 
capacity and limitations. 
     Multiplication operation could only be 
implemented for the resulting number of not 
exceeding 16-bit. Division operation is achieved 
only for the resulting numbers without residue.  The 
arithmetic and logic operations are performed in 
about 340 ns, load and store commands are 
performed in 660 ns, quick load and quick store 
commands are performed in 440 ns. In other words, 
the performance of the microprocessor  realized  is 3 
MHz for the arithmetic and logic operations, and 1.5 
MHz for load and store operations, and 2.3 MHz for 
the quick load and store operations. 
     The clock frequency was set to 50 MHz, which is 
the evaluation board value. In fact the processor can 
work at higher clock frequencies. Another limitation 
was the capacity of the RAM available on the test 
board. Resulting a conversion on the size of the 
address   bus  from  16-bit  to 10-bit  for  the  testing  

 
 
purposes only. Because, the RAM with the largest 
capacity uses 10-bit address bus.  The switches, 
surface mounted LEDs and LCDs on the board are 
used for different purposes for the verification of the 
complete microprocessor. 
     It is believed that this processor core can also be 
adapted into low-speed FPGA-based System On 
Chip Industrial ASIC solutions beside its 
educational use. 
 

 
Fig.8  Experimental Setup 
 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    287



References: 
 
[1] Bezarra, E. A., Gough, M.P., “A Guide to 
Migrating from Microprocessor to FPGA Coping 
the Support Tool Limitations”, ELSEVIER 
Microprocessor and Microsystems 23, 561-572, 
(1999) 
[2] Herman, H.S., Srihari, C., Matthew, M., 
“Pipeline Reconfigurable FPGAs”, Journal of VLSI 
Signal Processing Systems”, pp. 24, 129-146, 
(2000). 
[3] Borgatti, M., Lertora, F., Foret, B., Cali L., “A 
Reconfigurable System Featuring Dynamically 
Extensible Embedded Microprocessor, FPGA and 
Customizable I/O”, IEEE Custom Integrated 
Circuits Conference, pp. 13-16, (2002). 
[4] Ireneusz Janiszewski, Robert Baraniecki, 
Krystyna Siekierska, “A reusable microcontroller 
core’s design”, IEEE, VHDL International Users 
Forum Fall Workshop (VIUF ’99), pp. 14-21, 
(1999). 
[5] Jurado-Carmona, F.J., Tombs, J., Aguirre, M.A., 
Torralba, A., “ Implementation  of a fully pipelined 

ARM compatible microprocessor core” XVII Design 
on Circuits and Integrated Systems Conference, 
DCIS'02, pp. 559-563. 2002 
[6] M. Cakıroglu, “Gerçek Zaman Sayma Birimi 
Iceren SAU80C51 Mikro denetleyicisinin FPGA 
Mimarileri Kullanilarak Geliştirilmesi”, MsC 
Thesis, Sakarya University,, Sakarya, Turkey pp. 
29-32, (2003). 
[7] J. Davidson “ FPGA Implementation of a 
Reconfigurable Microprocessor” IEEE Custom 
Integrated Circuits Conference, 1993. 
[8] T. Sueyoshi, M. Kuga, and H. Shibamura, 
“KITE Microprocessor and CAE for Computer 
Science”, Systems and Computers in Japan, Vol. 33, 
No. 8, 2002 
[9]  J. S. Pastor, I. Gonzalez, J. Lopez, F. Gomez 
Arribas, J. Martinez, “A Remote Laboratory for 
Debugging FPGA-Based Microprocessor 
Prototypes”, Proceedings of the IEEE International 
Conference on Advanced Learning Technologies 
(ICALT’04),2004.

 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    288


