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Abstract:As demonstrated in our previous work, the quantized RSSI based range estimation algorithm (RangeQ)
can be used to improve localization accuracy when range information is not available. By converting the signal
strength ordering information into a fraction of a unit hop, this technique obtains a more precise hop distance
than the DV-hop approach.In order to fully compare the performance of RangeQ-based localization algorithms, we
design an experimental framework to evaluate two existing methods and their RangeQ based versions: Ad-hoc Po-
sitioning System (APS)and Multidimensional Scaling (MDS)We study several factors that affect the performance
of localization, including anchor density, radio range (connectivity), and RSSI error rate. For performance metrics,
we use localization variance as precision factor along with the widely-used accuracy factor. To get a better idea of
how precise the localization result is, we also compare the whole result set with the Cramer-Rao lower bound of
RangeQ.
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1 Introduction

Recent applications that require instrumenting the
physical world and recent advances in MEMS (micro-
electro-mechanical systems), embedded systems, pro-
cessor, radio, and memory technologies have re-
sulted in the emergence ofsensor networks[10, 3].
These applications, in one form or another, are mon-
itoring either the environment or the natural habi-
tats [1, 7]. Routing, time synchronization, localiza-
tion, and topology control are areas where new algo-
rithms and protocols need to be developed. The local-
ization problem may be stated as: dynamically deter-
mining the physical position in the space of a given
sensor node in the ad-hoc wireless sensor network.
Formally, the problem may be formulated as follows:
Given a connected network ofN nodes, where a sub-
set of these nodesm < N (called anchors) know their
locations, and given imprecise range measurements
among neighboring nodes, find the locations of the re-
maining (N −m) nodes. This problem definition will
be used throughout this paper.

∗Hongchi Shi is on leave from the University of Missouri-
Columbia while performing this research.

Current wireless sensor network localization al-
gorithms are categorized either as range-free or range-
aware algorithms based on whether they use the range
(i.e., distance) information. Although wireless sen-
sor systems usually have available received signal
strength (RSSI) readings, this useful information has
not been effectively used in the existing localization
algorithms. The existing range-free algorithms do
not use this information, while the range-aware al-
gorithms require sophisticated ranging techniques to
estimate ranges. In RangeQ, we introduce and de-
velop a partial-range-aware localization scheme uti-
lizing RSSI readings. The scheme can be used in any
hop-based range-free algorithms to improve their lo-
calization accuracy.

In order to evaluate the performance of a localiza-
tion algorithm, we distinguish two types of metrics:
localization varianceand localization accuracy. Lo-
calization variance is the precision measurement that
tells the degree of reproducibility of the localization
result. Accuracy, on the other hand, tells how close the
result is against the true position of each node. Most
localization studies only consider accuracy as the key
performance factor while a few other works show the
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theoretical aspect of error analysis on variance. Not
much work has been done on combining the two met-
rics to fully present the validity of a localization result
set. We design simulations to accommodate both met-
rics for an in-depth performance analysis.

The accuracy and precision performance met-
rics are evaluated based on various network param-
eters. In this paper, we design an experimental sys-
tematic evaluation framework to evaluate localiza-
tion methods for sensor networks. Using this frame-
work, we evaluate two existing localization methods
and their RangeQ versions: Ad-hoc Positioning Sys-
tem (APS) [8], localization using multidimensional
scaling (MDS) [13], and RSSI quantization based lo-
calization (RangeQ). Altogether six algorithms will
be evaluated, including APS-HOP (APS range-free),
APS (APS range-aware), MDS-HOP (MDS connec-
tivity only), MDS (MDS range-aware), RangeQ-APS
(Aps with RangeQ range estimation technique), and
RangeQ-MDS (MDS with RangeQ range technique).
The network properties that we identify affecting the
performance of localization are radius (average net-
work connectivity), range measurement error, and an-
chor ratio.

The rest of the paper is organized as follows. The
next section covers our evaluation framework used to
evaluate the localization algorithms. In Sections 3,
3.4, we present the simulation result of localization
accuracy and variance, respectively. We conclude our
paper in Section 4.

2 Evaluation Framework

In this section, we present an evaluation framework
for evaluating the performance of localization meth-
ods and our range error model. This framework is ap-
plied to three existing localization algorithms: Ad-hoc
Positioning System (APS) [8], localization using mul-
tidimensional scaling (MDS) [13], and their RangeQ
versions. We evaluate their performance on the same
platform and simulation setup, as explained below.

2.1 Modeling Range Errors

Sensor nodes in a wireless sensor network commu-
nicate through peer-to-peer links, and pair-wise mea-
surements such as RSSI can be made with these
links [9]. In RangeQ, we considerS levels of quan-
tized RSSI measurements. The quantized RSSI mea-
surements are subject to the deleterious effects of a
fading channel. Received signal strength is attenuated

by large-scale path losses, frequency selective fading,
and shadowing losses [6, 9].

Let dkj be the true distance between sensor nodes
k andj. That is,

dkj =
√

(xk − xj)2 + (yk − yj)2 (1)

The received power at devicek transmitted by de-
vice j (in dBm) can be formulated as

P = Π0 − 10np log
dkj

40
(2)

whereΠ0 (dBm) is the received power at the refer-
ence distance40. Typically,40 = 1 meter, andΠ0

is calculated from the free space loss formula [11].
The path-loss exponentnp is a function of the envi-
ronment, typically between 2 and 4.

We assumenp is a Gaussian random variable, i.e.,
np ∼ N(α, σ2

np), and the measurement error is Gaus-
sian noise,N(0, σ2

dB). The assumption thatnp can be
modelled as a Gaussian random variable is supported
by a few researchers’ work [12, 2, 4, 15]. Based on
the data obtained by Seidel et al. [12], the mean of
np is 3. The measured received power,Pkj , at device
k transmitted by devicej is also a Gaussian random
variable

Pkj ∼ N

(
Π0 − 10α log

dkj

40
, [(10 log

dkj

40
)σnp]2

)
+ (3)

N
(
0, σ2

dB

)
2.2 Accuracy, Precision, and CRB

As in many other existing evaluations, the localization
accuracy is defined as the difference between a node’s
real position and its estimated position. A widely-
used accuracy representation is the ratio between the
mean distance error and the radio range.

The precision is represented by the localization
error variance. The localization error variance for the
localization algorithms is the mean standard deviation
(σ) of the distance between the true position and es-
timated position of each node. The localization er-
ror variance of each network is computed as the mean
from the 100 nodes. The final variance is then the
mean from the result of a number of networks.

The Cramer-Rao Lower Bound (CRB) is a lower
bound on the minimum achievable variances of any
unbiased estimates of parameters. The purpose of de-
riving CRB is to see how well the algorithms perform
against each other and the CRB. As formulated in
[14], the theoretical variance is the root-mean-squared
localization error variance of CRB.
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2.3 Simulation Setup

Simulation was done with MATLAB 7.0 on 2-
dimensional networks of 100 nodes deployed in a
1000r×1000r sensing field, wherer is the unit length.
Instead of a unit-disk approach, we adopt a more re-
alistic model in which the radio propagation pattern
is irregular due to path-loss and shading in the sur-
rounding environment. As shown in 1(a), in a unit-
disk graph, every node within the disk should be con-
nected to the center node. A more realistic model is
a quasi-unit-disk graph [5], where the radio range is a
random number which is less than the maximum ra-
dius and greater than a minimum distance (See 1(b)).
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(a) Unit-disk radio model
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(b) Quasi unit-disk radio model

Figure 1: Radio models

We conducted several experiments using various
combinations of values for three network properties
that may affect the performance: average network
connectivity (or average degree of a node), ranging er-
ror, and anchor percentage ratio. Table 1 summarizes
the value(s) used for each property.

The ranging error is considered not only for
range-based algorithms, such as the DV-distance ver-

Table 1: Simulation setup for the evaluation framework
Parameter Range of values

Number of nodes 100
Sensing field 1000r × 1000r
Radio range 250r, 300r, 350r

Ranging error σnp= 0.025,0.035,0.045,
0.065, 0.075,σdB = 1.3

Anchor % 5%− 20%
Range MeasurementRange-based & range-free

sion of APS and the range-based version of MDS-
MAP. For range-free algorithms, this range error is
also effective because of the radio model applied in
this investigation. The anchors are randomly deployed
with anchor ratios 5% to 20%.

3 Simulation Result
In this section, we present the localization accuracy
and precision result of MDS-HOP, MDS, APS–HOP,
RangeQ-MDS, and RangeQ-Aps. In numbers, accu-
racy is the mean distance error of the estimated posi-
tion. So the smaller the error, the more accurate al-
gorithm it is. The evaluation is done on the follow-
ing three network parameters: network connectivity
(radio range), anchor density, and range (RSSI) error
rate.

3.1 Localization Accuracy for Different An-
chor Densities

Anchor density is an important factor affecting local-
ization accuracy. Higher anchor density has positive
influence on accuracy. Figure 2 shows that when an-
chor density is greater than10%, the accuracy perfor-
mance stays flat.

Figure 2 shows that RangeQ-based MDS and
APS are more accurate than APS-HOP and MDS-
HOP by 20 − 40% of the radio range. By assign-
ing a fraction of the radio range to an otherwise unit-
hop value for all 1-hop connections, RangeQ signifi-
cantly improves the range estimation quality and gives
more accurate range value than the DV-hop approach.
On the range-aware side, while RangeQ-APS is very
close to the range-aware APS, RangeQ-MDS is worse
than range-aware MDS by about10% of the radio
range. This tells us that MDS utilizes the available
range information better than APS. More discussion
can be found in the corresponding variance section.
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Figure 2: Improvement of RangeQ over APS-HOP and
MDS-HOP:σnp = 0.045, and radius is250.

3.2 Localization Accuracy for Different Ra-
dio Connectivity

The accuracy performance ranking for different con-
nectivity is similar among the algorithms compared.
Figure 3 shows that RangeQ is10− 30% better on lo-
calization error variance than the range-free APS and
MDS.

One might notice that the improvement made by
higher network connectivity shown in Figure 3 is rel-
ative to the radio range. The moderate relative gain
for greater radio range reveals that absolute position
error might stay flat for various radio ranges. This re-
sult might be caused by the erroneous radio model.
Although increasing radio range provides more range
information, it also introduces more erroneous range
information since connectivity is not guaranteed in the
realistic radio model. Therefore, it is intuitive to as-
sume that there is a minimum connectivity threshold,
which gives good-enough localization accuracy and
increasing of its value would not improve the local-
ization result. This is an interesting and also important
discovery for localization performance tuning and en-
ergy saving.

3.3 Localization Accuracy for Different
Range Errors (Path-loss Index Errors)

Range error is represented by the path-loss index
(exponent) error. Figure 7 shows several interest-
ing “phase” change points. When error rate is less
than0.03, RangeQ-MDS performs worse than APS,
but after that, RangeQ-MDS surpasses APS in lo-
calization accuracy. At the error rate0.04, MDS-
HOP jumps over APS-HOP with increased position
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Figure 3: Localization error accuracy: Anchor ratio is
10%, andσnp is 0.045.

errors after that point. When the error rate is greater
than0.07, RangeQ-MDS is more accurate than range-
aware MDS, which shows its less error sensitivity than
MDS.
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Figure 4: Localization error accuracy: Anchor ratio is
10%, and communication radius is250.

3.4 Localization Precision
Similar to the accuracy result. Higher anchor den-
sity has positive influence on variance, too. Fig-
ure 5 shows that RangeQ improves the performance
of APS-HOP and MDS-HOP by20 − 40% of the ra-
dius. It is not better than the range-aware version of
either MDS or APS, but the performance of RangeQ-
based MDS and APS is very close to their stand-
alone range-aware versions.This along with the pre-
vious accuracy simulation result together shows that
the RangeQ range estimation model is valid.
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Among all the algorithms, the variance of MDS
performs the best. The difference between RangeQ-
MDS and MDS is more than the difference between
RangeQ-APS and APS, which shows that by using
network-wise distance based optimization, MDS uti-
lizes the available distance information more effec-
tively than APS.
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Figure 5: Improvement of RangeQ over APS-HOP and
MDS-HOP:σnp = 0.045, and radius is250.

For connectivity, Figure 6 shows that RangeQ is
10 − 20% better on localization error variance than
the range-free APS and MDS. As mentioned in the
accuracy section, the effect of radio range on variance
is similar as on accuracy.
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Figure 6: Localization error variance: Anchor ratio is
10%, andσnp is 0.045.

For path-loss index (exponent),Figure 7 shows
similar localization error variance increasing trend in
all the algorithms except that RangeQ is less range-
error sensitive than the range-aware APS and MDS.
For a smaller path-loss variance, localization error

Table 2: Accuracy and Variance Ranking
Algorithms Ranking

MDS 1
RangeQ-MDS 2

APS 3
RangeQ-APS 4

APS-HOP 5
MDS-HOP 6

variance of RangeQ is close to the range-based algo-
rithms and20 − 40% better than the range-free ones.
Figure 7 also shows that when the path-loss index er-
ror is smaller, MDS localization variance is very close
to CRB.
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Figure 7: Localization error variance: Anchor ratio is
10%, and communication radius is250.

3.5 Overall Performance Ranking

Based on the result shown in Figures 2-7, a gen-
eral performance ranking table is created (Table 2).
MDS is the best for both precision and accuracy while
RangeQ lies in between range-aware and range-free
MDS and APS. From Table 2, we can clearly see
the correlation between the performance of RangeQ-
based algorithms and their stand-alone range-aware
versions. RangeQ can improve the performance of
a range-free localization algorithm, but the degree of
improvement depends on the range-free algorithm it-
self, which shows both the advantage and disadvan-
tage of RangeQ.
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4 Conclusions

This paper combines two key localization perfor-
mance metrics: localization precision and localiza-
tion accuracy. We have designed an experimental
framework to evaluate localization methods. Us-
ing this framework, we have evaluated MDS, APS,
MDS-HOP, APS-HOP, RangeQ-MDS and Range-
APS. Based on the metrics and three network pa-
rameters that affect localization performance, sim-
ulation experiments are performed on six localiza-
tion algorithms, and their performances are systemat-
ically evaluated. The simulation result shows that the
RangeQ range estimation method can improve both
the localization accuracy and variance by20−40% of
the radio range. This proves that RangeQ is a solid
method when RSSI is available but a radio model
is undefined or difficult to measure the parameters.
Moreover, a ranking list is composed based on the
simulation result which may help in making algorithm
choices under different network setup.
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