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Abstract:A new type of the first integrals associated with KdV equation is constructed by applying the trace for-
mulas of Deift-Trubowitz type for the 1-dimensional Schrödinger operator with no bound states. The relations
between the well-known first integrals with the densities expressed in terms of differential polynomials and the
present first integrals are obtained.
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1 Introduction
In this paper, we consider a spectral meaning of the
first integrals of KdV equation

∂u

∂t
− 6u

∂u

∂x
+

∂3u

∂x3
= 0, (1)

whereu = u(x, t) is the spatially rapidly decreasing
real valued function. We restrict ourselves to the case
such that the 1-dimensional Schrödinger operator

Ht = − d2

dx2
+ u(x, t)

has no bound states, i.e,σp(Ht) = ∅, whereσp(P )
denotes the set of discrete spectrum of the operator
P considered in the spaceL2(IR). The functional
I[u](t) which corresponds the functionu(x, t) to the
function of the one variablet is called the first integral
or the conservation law of the equation (1), if

d

dt
I[u](t) = 0

holds for the solutionu(x, t) of KdV equation (1).
Moreover the functionw(x, t) is called the local den-
sity of the first integralI[u](t), if

I[u](t) =
∫ ∞

−∞
w(x, t)dx

holds. In [12], Zakharov and Faddeev showed that
there are infinitely many first integrals which have

local densities expressed in terms of the differential
polynomials ofu(x, t).

On the other hand, in [2], Deift and Trubowitz
derived the trace formula

i

π

∫ ∞

−∞
kr±(k)f±(x, k)2dk

− 2
N∑

j=1

c±,jηjf±(x, iηj)2 =
1
2
u(x)

(2)

for the 1-dimensional Schrödinger operator

H = − d2

dx2
+ u(x)

with the rapidly decreasing real valued potentialu(x),
wherer±(k) are the left and right reflection coeffi-
cients,f±(x, k) are the left and right Jost solutions,
−η2

j , j = 1, 2, · · · , N are the discrete eigenvalues of
the operatorH, andc±,j are the normalizing coeffi-
cients. We will briefly mention these materials in the
next section. In particular, if the operatorH has no
bound states, we have the trace formula

i

π

∫ ∞

−∞
kr±(k)f±(x, k)2dk =

1
2
u(x). (3)

On the other hand, in [1], Deift, Lund and
Trubowitz derived the another trace formula

− i

π

∫ ∞

−∞

1
k
r±(k)f ′±(x, k)2dk =

1
2
u(x) (4)
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for the rapidly decreasing real valued potentialu(x)
such that the operatorH has no bounds states and sat-
isfies the condition

r±(0) = −1.

The main purpose of the present paper is to give
a new spectral interpretation of the first integrals of
KdV equation using above trace formulas and, fur-
thermore, construct a new kind of first integrals.

The contents of the present paper are as follows.
In §2, the fundamental materials are briefly explained.
In §3, the trace formulas of Deift-Trubowitz type and
its generalization are discussed. In§4, an evolution
equation satisfied by the Jost solution is derived. In
§5, the spectral interpretation of the first integrals of
KdV equation is given.

2 Preliminaries
In this section, the necessary materials are summa-
rized.

Throughout this section, we assume that the real
valued potentialu(x) satisfies the integrability condi-
tion ∫ ∞

−∞
(1 + |x|2)|u(x)|dx < ∞.

Let f±(x, k) be the Jost solution of the eigenvalue
problem

Hf(x, k) = −f ′′(x, k) + u(x)f(x, k) = k2f(x, k),

i.e., f±(x, k) behave likeexp(±ikx) asx −→ ±∞
respectively. LetW [f, g] = fg′ − f ′g be the Wron-
skian, then the right (+) and left (-) reflection coeffi-
cientsr±(k) are defined by

r±(k) = ±W [f+(x,∓k), f−(x,±k)]
W [f−(x, k), f+(x, k)]

, k ∈ IR\{0}.

We have

|r±(k)| < 1, k ∈ IR \ {0}
in general. Moreover one of the two cases

r±(0) = −1 (5)

or
|r±(k)| < 1 for all k ∈ IR.

holds. It is known that the condition (5) is generic.
On the other hand, letiηj , 1 ≤ j ≤ N be the zeros
in the upper half planeH+ of the analytic function
W [f−(x, k), f+(x, k)], k ∈ H+, where

H+ = {k|k ∈ CI , =k > 0}

for the complex planeCI . Then

σp(H) = {−η2
j |1 ≤ j ≤ N}

holds, andf±(x, iηj), 1 ≤ j ≤ N are the square
integrable eigenfunctions associated with the operator
H. Let c±,j be the nomalization coefficients of those
eigenfunctions, i.e.,

c±,j =
1∫∞

−∞ f(x, iηj)2dx
. (6)

The collections

Σ± = {r±(k),−η2
j , c±,j ; 1 ≤ j ≤ N}

are called the scattering data. See [2] and [4] for de-
tails of the scattering theory ofH.

Now we consider the scattering data of the oper-
atorHt with the spatially rapidly decreasing potential
u(x, t) which solves KdV equation (1). In this case,
the elements of the scattering data depend ont, i.e.,
those are denoted asr±(k, t), c±,j(t), andηj(t). In
[3], Gardner, Greene, Kruskal and Miura discovered
the following formulas;

r±(k, t) = r±(k, 0) exp(−8ik3t),

c±,j(t) = c±,j(0) exp(−8η3
j t),

ηj(t) = ηj(0).

(7)

Next we explain the recursion operatorΛ and the
KdV polynomials.The operatorΛ is the formal pseud
differential operator defined by

Λ =
(

d

dx

)−1 (
1
2
u′(x) + u(x)

d

dx
− 1

4
d3

dx3

)
. (8)

PutZ0(u) = 1 and define the functionsZn(u) by the
recurrence relation

Zn(u) = ΛZn−1(u), n ∈ IN, (9)

whereIN is the set of all natural numbers. Then it is
known thatZn(u) are the differential polynomials of
u(x). For example, we have

Z1(u) =
1
2
u, Z2(u) =

1
8
(3u2 − u′′). (10)

We call them the KdV polynomials. We refer the
reader [7, lemma 3.1, p.621] and [8, p.952] for more
precise information.

Next we explain the following Appell’s lemma.
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Lemma 1. Let y = f(x) andy = g(x) be the solu-
tions of the 2nd order ordinary differential equation

d2y

dx2
= p(x)y,

then the productz = f(x)g(x) solves the 3rd order
ordinary differential equation

d3z

dx3
= 4p(x)

dz

dx
+ 2p′(x)z.

This lemma is quite elementary fact and easy to
prove it. See [10] and [9] for detail. By Appell’s
lemma and the definition (8) of the recursion opera-
tor, we have immediately

d

dx
Λg±(x, k) = k2 d

dx
g±(x, k),

whereg±(x, k) = f±(x, k)2, i.e.,

Λg±(x, k) = k2g±(x, k). (11)

3 Trace formulas of Deift-Trubowitz
type

By the trace formula (2) and (10), we have

i

π

∫ ∞

−∞
kr±(k)f±(x, k)2dk

− 2
N∑

j=1

c±,jηjf±(x, iηj)2 = Z1(u).
(12)

By operating with the operatorΛn−1 on the both sides
of (12), then the trace formulas

i

π

∫ ∞

−∞
k2n−1r±(k)f±(x, k)2dk

+ (−1)n2
N∑

j=1

c±,jη
2n−1
j f±(x, iηj)2 = Zn(u)

(13)

immediately follow from (9) and (11). Moreover, in
[6], the identities

− i

π

∫ ∞

−∞
k2n−1r±(k)f ′±(x, k)2dk

− (−1)n2
N∑

j=1

c±,jη
2n−1
j f ′±(x, iηj)2

= −Zn+1(u(x)) + u(x)Zn(u(x))

− 1
2

d2

dx2
Zn(u(x))

are derived.In particular, if the operatorH has no
bound states and is of the generic type, i.e., the con-
dition (5) is valid, then the following two types of the
trace formulas hold;

i

π

∫ ∞

−∞
k2n−1r±(k)f±(x, k)2dk = Zn(u)

i

π

∫ ∞

−∞
k2n−1r±(k)f ′±(x, k)2dk

= Zn+1(u(x))− u(x)Zn(u(x)) +
1
2

d2

dx2
Zn(u(x))

4 The first integrals with the local
densities

It is easy to see that ifu(x, t) is the spatially rapidly
decreasing solution of KdV equation (1), then the
functional

I1[u](t) =
∫ ∞

−∞

1
2
u(x, t)dx

is independent oft, i.e., I1[u] is the first integral of
KdV equation with the local densityZ1(u(x, t)) =
1
2u(x, t). Moreover, in [5], it is shown that the func-
tionals

In[u](t) =
∫ ∞

−∞
Zn(u(x, t))dx

are the first integrals of KdV equation (1). Hence, by
the trace formulas (13), we have immediately

In[u](t) =
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
k2n−1r±(k, t)f±(x, k, t)2dk

+ (−1)n2
N∑

j=1

c±,j(t)η2n−1
j

∫ ∞

−∞
f±(x, iηj , t)2dx,

wherer±(k, t) andc±,j(t) are defined by the GGKM
formulas (7), andf±(x, k, t) are the Jost solutions of
the operatorHt. By the definition of the normalization
coefficients (6), one verifies immediately

In[u](t) =
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
k2n−1r±(k, t)f±(x, k, t)2dk

+ (−1)n2
N∑

j=1

η2n−1
j .
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Moreover, if the operatorH0 corresponding to the ini-
tial valueu(x, 0) has no bounds states, we have the
quite simple expression

In[u](t)

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
k2n−1r±(k, t)f±(x, k, t)2dk.

(14)

On the other hand, if the operatorH0 is reflectionless,
i.e.,r±(k, 0) ≡ 0, then

In[u](t) = (−1)n2
N∑

j=1

η2n−1
j (15)

follows, and the right hand side of (15) is obviously
independent oft.

It is proved independently from these expressions
that the functionalIn[u](t) does not depend ont. In
§6, using these expressions, we give a new proof of the
fact that the functionalIn[u](t) does not depend ont
in the case thatH0 has no bound states, and construct
another kind of first integrals.

5 An evolution equation satisfied by
the Jost solution

In what follows, we assume that the operatorH0 has
no bound states. For the simplicity, we denote sim-
ply f(x, k, t) and r(k, t) instead off±(x, k, t) and
r±(k, t), andr(k) instead ofr(k, 0).

First we derive an evolution equation satisfied by
the functionexp(−8ik3t)f(x, k, t)2. Put

g = g(x, k, t) = exp(−8ik3t)f(x, k, t)2, (16)

then, by (3), we have

u(x, t) =
2i

π

∫ ∞

−∞
kr(k)g(x, k, t)dk.

Substitute this into KdV equation (1), then

6uux−uxxx =
2i

π

∫ ∞

−∞
kr(k)(6ugx−gxxx)dk. (17)

follows. By Appell’s lemma mentioned in§2 as
Lemma1, we have

gxxx = 4(u− k2)gx + 2uxg. (18)

Eliminating the termgxxx in (17) by (18), one verifies

6uux−uxxx =
2i

π

∫ ∞

−∞
kr(k)(2ugx−2uxg+4k2gx)dk.

Hence we have

ut − 6uux + uxxx

=
2i

π

∫ ∞

−∞
kr(k)(gt − 2ugx + 2uxg − 4k2gx)dk

≡ 0.

By the definition of the Jost solution, one obtains the
asymptotic identity

gt − 2ugx + 2uxg − 4k2gx ∼ C(k, t) exp(2ikx),

whereC(k, t) is a function ofk andt. Hence we have
the evolution equation for the functiong(x, k, t).

Theorem 2. The functiong(x, k, t) solves the evolu-
tion equation

gt − 2ugx + 2uxg − 4k2gx = 0. (19)

Substitute (16) into (19), then, by the direct cal-
culation, we have the evolution equation for the Jost
solutionf = f(x, k, t).

Theorem 3. The Jost solutionsf = f±(x, k, t) of the
operatorHt solve the evolution equation

ft − 2ufx + uxf − 4k2fx = 0.

6 A spectral interpretation of the
first integrals of KdV equation

In this section, we assume that the functionknr(k),
n ≥ 1 belongs to the Schwartz spaceSk of k-variable
functions for anyn ∈ IN. For arbitraryn ∈ IN, define
the functionFn(x, t) andGn(x, t) by

Fn(x, t) =
∫ ∞

−∞
knr(k, t)f(x, k, t)2dk

=
∫ ∞

−∞
knr(k)g(x, k, t)dk,

Gn(x, t) =
∫ ∞

−∞
knr(k, t)fx(x, k, t)2dk.

Since the Jost solutionf(x, k, t) behaves like
exp(ikx) as x −→ ∞, and like α exp(ikx) +
β exp(−ikx) asx −→ −∞, we have the following
lemma.

Lemma 4. The functionFn(x, t) andGn(x, t) belong
to the Schwartz spaceSx of x-variable functions for
anyt.
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Define the functionalsJn[u](t), n ≥ 1 by

Jn[u](t)

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k, t)f(x, k, t)2dk

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)g(x, k, t)dk

=
i

π

∫ ∞

−∞
Fn(x, t)dx

(20)

It is known that the integration in (20) converges. The
convergence problem concerned with the integration
of this type is known to be very delicate. We refer
the reader [2] for more precise treatment concerned
with the convergence problem of the integration of
this type.

Now, we have the following theorem which is the
main result of the present work.

Theorem 5. Suppose thatu(x, t) is the spatially
rapidly decraesing real valued solution of KdV equa-
tion such that the operatorH0 has no bound states.
Then, the functionalsJn[u](t) are independent oft,
i.e., are the first integrals of KdV equation.

Proof. By Theorem2, we have

d

dt
Jn[u](t)

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)gt(x, k, t)dk

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)×

(2ugx − 2uxg + 4k2gx)dk

=
i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)(2ugx − 2uxg)dk

+
4i

π

∫ ∞

−∞
dx

∂

∂x

∫ ∞

−∞
kn+2r(k)gdk.

By Lemma4,

∫ ∞

−∞
dx

∂

∂x

∫ ∞

−∞
kn+2r(k)gdk

=
∫ ∞

−∞

∂

∂x
Fn+2(x, t)dx = 0.

follows. Moreover, since the productuFn is also in

Sx, one verifies

d

dt
Jn[u](t)

= − i

π

∫ ∞

−∞

∂

∂x
(uFn)dx

+
4i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)ugxdk

=
4i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)ugxdk.

(21)

Next we calculate the last term of the expression (21).
By the definition, we have

4i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)ugxdk

=
8i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)uffxdk

=
8i

π

∫ ∞

−∞
dx

∫ ∞

−∞
knr(k)(fxx + k2f)fxdk

=
4i

π

∫ ∞

−∞

∂

∂x
(Gn(x, t) + Fn(x, t))dx = 0,

where we used the relation

uf = fxx + k2f.

This completes the proof. q.e.d.

By (14), the relation between the first integrals
Jm[u] andIn[u] is stated by the following corollary.

Corollary 6. For arbitrary n ∈ IN, the identities

J2n−1[u](t) = In[u](t)

hold.

Thus, by Theorem5, we could construct the first
integrals with the local densities which are not the dif-
ferential polynomialsZn(u). In this case, we consid-
ered the problem for only the operator without bound
states. We will discuss a similar problem for the oper-
ator with the discrete eigenvalues in the forthcoming
paper [11].
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