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Abstract: - Function approximation, which finds the underlying relationship from a given finite input-output 
data is the fundamental problem in a vast majority of real world applications, such as prediction, pattern 
recognition, data mining and classification. Various methods have been developed to address this problem, 
where one of them is by using artificial neural networks. In this paper, the radial basis function network and 
the wavelet neural network are applied in estimating periodic, exponential and piecewise continuous functions. 
Different types of basis functions are used as the activation function in the hidden nodes of the radial basis 
function network and the wavelet neural network. The performance is compared by using the normalized 
square root mean square error function as the indicator of the accuracy of these neural network models.     
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1   Introduction 
Learning a mapping between an input and an output 
space from a set of input-output data is the core 
concern in diverse real world applications. Instead 
of an explicit formula to denote the function f, only 
pairs of input-output data in the form of (x, f(x)) are 
available.  
      Let   ,m

i Rx ∈  i = 1,2,…,N 
1Rdi ∈ , i = 1,2,…,N 

be the N input vectors with dimension m and N real 
number output respectively. We seek an unknown 
function f(x):Rm→R1 that satisfies the interpolation 
where  

f (xi) = di,  i = 1,2,…,N 
     The goodness of fit of di by the function f, is 
given by an error function. A commonly used error 
function is defined by 
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where yi is the actual response.  
     In short, the main concern is to minimize the 
error function. In the other words, to enhance the 
accuracy of the estimation is the principal objective 
of function approximation.  
    There exist multiple methods that have been 
established as function approximation tools, where 
an artificial neural network (ANNs) is one of them. 

According to Cybenko [1] and Hornik [2], there 
exists a three layer neural network that is capable in 
estimating an arbitrary nonlinear function f with any 
desired accuracy. Hence, it is not surprising that 
ANNs have been employed in various applications, 
especially in issues related to function 
approximation, due to its capability in finding the 
pattern within input-output data without the need for 
predetermined models. Among all the models of 
ANNs, the multilayer perceptron (MLP) is the most 
commonly used.  
     Nevertheless, MLP itself has certain 
shortcomings. Firstly, MLP tends to get trapped in 
undesirable local minima in order to reach the global 
minimum of a very complex search space. Secondly, 
training of MLP is highly time consuming, due to 
the slow converging of MLP. Thirdly, MLP also 
fails to converge when  high nonlinearities exist. 
Thus, these drawbacks deteriorate the accuracy of 
the MLP in function approximation [3, 4, 5]. 
     To overcome the obstacles encountered by using 
an MLP, a radial basis function network (RBFN), 
which has been introduced by replacing the global 
activation function in MLP with a localized radial 
basis function, has been found to perform better than 
the MLP in function approximation [6,7].  
     The idea of combining wavelet basis functions 
and a three layer neural network has resulted in the 
wavelet neural network (WNN), which has a similar 
architecture with the RBFN. Since the first 
implementation of the WNN by Zhang and 
Benveniste [8, 9, 10], it has received tremendous 
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attention from other researchers [11, 12, 13, 14] due 
its great improvement over the weaknesses of MLP.   
     This paper is organized as follows. In sections 2 
and 3, a brief introduction of RBFN and WNN is 
presented. The types of basis functions used in this 
paper are given in section 4, while numerical 
simulations of both neural network models in 
function approximation are discussed in section 5, 
where the performance of RBFN and WNN are 
compared in terms of the normalized square root 
mean square error function. Lastly, conclusions are 
drawn in section 6.    
 

 
2   Radial Basis Function Network 
Radial basis function network was first introduced 
by Broomhead and Lowe in 1988 [6], which is just 
the association of radial functions into a single 
hidden layer neural network, such as shown in 
Figure 1.   
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         Figure 1: Radial basis function network 
 
     A RBFN is a standard three layer neural network, 
with the first input layer consisting of of d input 
nodes, one hidden layer consisting of m radial basis 
functions in the hidden nodes and a linear output 
layer. There is an activation function φ  for each of 
the hidden node. Each of the hidden node receives 
multiple inputs ),...,( 1 dxxx = and produces one 
output y. It is determined by a center c  and a 
parameter b which is called the width, where 

mjbcxjj ,...,1),/(φ)(φ =−=ξ . 
φ  can be any suitable radial basis function, such as 
Gaussian, Multiquadrics and Inverse Multiquadrics. 
Thus, the RBFN output is given by  

               ∑
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where )(φ xj is the response of the jth hidden node 

resulting from all input data, jw  is the connecting 
weight between the jth hidden node and output 
node, and m is the number of hidden nodes. The 
center vectors, c , the output weights wj and the 
width parameter b are adjusted adaptively during the 
training of RBFN in order to fit the data well. 
 
2.1 Learning of Radial Basis Function 

Network 
By means of learning, RBFN tends to find the 
network parameters ic ,b and iw , such that the 
network output )( ixy   fits the unknown underlying 
function  )( ixf  of a certain mapping between the 
input-output data as close as possible. This is done 
by minimizing an error function, such as in Equation 
3.  
     The learning in RBFN is done in two stages. 
Firstly, the widths and the centers are fixed. Next, 
the weights are found by solving the linear equation. 
There are a few ways to select the parameter centers, 

ic . It can be randomly chosen from input data, or 
from the cluster means. The parameter width, b, 
usually is fixed. Once the centers have been 
selected, the weights that minimize the output error 
are computed by solving a linear pseudoinverse 
solution.  
     Let us represent the network output for all input 
data, d,  in Equation (5) as Y = Φ W where  
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is the output of basis functions ϕ , and 
||)(||),( jiji cxcx −= ϕϕ  

Hence, the weight matrix W can be solved as  
W = Φ+Y 

where Φ+ is the pseudoinverse defined as 
Φ+ = (ΦTΦ)-1ΦT 

        
 
3   Wavelet Neural Network 
By incorporating the time-frequency localization 
properties of wavelet basis functions and the 
learning abilities of ANN, WNN has yet become 
another suitable tool in function approximation [8, 9, 
10, 14].  
     WNN shares a similar network architecture as 
RBFN [15, 16], such as shown in Figure 1. Instead 
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of the radial basis function, wavelet frames such as 
Gaussian wavelet, Morlet and Mexican Hat are used 
as the activation functions in the hidden nodes, 
while the center vectors and parameters of width in 
RBFN are replaced by translation jE  and dilation 

vectors jT respectively. In fact, RBFN and WNN 
have been proven that they are actually specific 
cases of a generic paradigm, called Weighted Radial 
Basis Functions [15]. 
     Similar to RBFN, WNN has a model based on 
Euclidean distance between the input vector x  and 
translation vector jE , where each of the distance 

components is weighted by a dilation vector jT . 
Thus, the output of WNN is given by  

       ∑
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where M is the number of hidden nodes.  
     Learning of WNN is similar to that of RBFN as 
discussed in section 2.1, where the parameters of the 
center and width of radial basis function in RBFN 
are replaced by the parameters of translation and 
dilation of the wavelet basis function in WNN 
respectively. 
 
 
4   Types of Basis Function 
In fact, RBFN and WNN are very similar to each 
other. The difference lies in the types of activation 
functions used in the hidden nodes of the hidden 
layer. Different types of basis functions that are used 
in this paper are given below (see Fig. 2): 
 

i. Mexican Hat 

);exp().2()( 22 zzn
T

EXz −−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
Φ=Φ  

where n = dim(z) 
 

ii. Gaussian Wavelet 
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Figure 2: Types of basis functions  
 
 
5   Numerical Simulations 
In this section, we present experimental results of 
RBFN and WNN in approximating different types of 
functions. It includes a continuous function with one 
and two variables, and also a piecewise continuous 
function with one variable. Different types of basis 
functions will be used as the activation function in 
the hidden nodes of RBFN and WNN, namely, the 
Gaussian, Gaussian Wavelet, Morlet and Mexican 
Hat. The simulation is done by using Matlab 
Version 7.0 [17].  
     To evaluate the approximation results, an error 
criterion is needed. The normalized square root 
mean square error function (Ne) is chosen as the 
error criterion, that is, 
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where f(i) and y(i) are the output of network and 
desirable value of the function to be approximated , 
nt is the total number of testing samples and yσ  is 
the standard deviation of the output value. A smaller 
Ne indicates higher accuracy.  
     For function approximation of continuous 
functions with one variable, as  in Case 1 and Case 
2, these functions were sampled at 100 uniformly 
spaced training points in the domain [-1,1], while 
the testing samples consists of 200 points, which 
were also  sampled uniformly in the same domain. 
     For the continuous functions with two variables, 
as in Case 3 and Case 4, 200 training points and 350 
testing points in the domain [-1,1] were used. 
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     Lastly, for the piecewise continuous function as 
in Case 5, we sample the function to yield 200 
points distributed uniformly over [-10, 10] as 
training data. For testing data, 200 points which 
were uniformly sampled over [-10, 10] were used. 
 
 
5.1 Case 1: 1-D Continuous Exponential 

Function 
 

      )33exp()1( +−+= xxy  
 
The simulation result for Case 1 by using RBFN and 
WNN with different basis functions is shown in 
Table 1, in terms of Ne. Fig. 3 shows the results for 
the approximation of the function in Case 1. 
 

Table 1: Simulation Result for Case 1 
Model Basis Function            Ne 
RBFN Gaussian    2.64481e-005 
WNN Gaussian Wavelet    0.0210695 
 Mexican Hat    9.41899e-005 
 Morlet    4.11055e-005 
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Figure 3: Simulation result for Case 1-zoom in 

  
From Table 1, RBFN with Gaussian as the basis 
function gives the best performance. It is stated in 
[16] that RBFN approximates an exponential 
function well. Hence, in Case 1 where a 1-D 
exponential function is used, RBFN outperforms 
WNN. The wavelet basis functions used have the 
same characteristics, namely, they are crude, 
symmetric and irregular in shape, compactly 
supported, which means they vanish outside a finite 
interval and have explicit expression. However, 
among all the wavelet basis functions used, 
Gaussian wavelet yields the lowest accuracy. It is 
probably due to the shape of Gaussian wavelet, 
which is less similar to the function used in Case 1. 
Hence, it could not adapt well to the shape of this 
exponential function. 

 

5.2 Case 2: 1-D Continuous Periodic 
Function 

 
      |)5|exp()4sin( xxy −= π  

 
The simulation result for Case 2 by using RBFN and 
WNN with different basis functions is shown in 
Table 2, in terms of Ne. Fig. 4 shows the results for 
the approximation of the function in Case 2. 
 

Table 2: Simulation Result for  Case 2 
Model Basis Function            Ne 
RBFN Gaussian       9.11658 
WNN Gaussian Wavelet       0.207205 
 Mexican Hat       6.09464 
 Morlet       3.98573 
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               Figure 4: Simulation result for Case 2 

 
From Table 2, WNN with Gaussian wavelet as the 
basis function gives the best performance. In Case 2 
a 1-D periodic function is used. A periodic function 
is approximated better by WNN with an oscillating 
wavelet basis function [16]. Hence, it is shown in 
Table 2 that RBFN gives the lowest accuracy. 
Among all the wavelet basis functions, Gaussian 
wavelet performs the best. The good performance of 
Gaussian wavelet, as demonstrated in Fig. 4, is 
probably due to its similar shape with the function 
used in Case 2. 
 
 
5.3 Case 3: 2-D Continuous Exponential 

Function 
            
 z = 2sin(π e-x2-y2) 

 
The simulation result for Case 3 by using RBFN and 
WNN with different basis functions is shown in 
Table 3, in terms of Ne.  
 

(12)

(13)

(14)

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007         143 



Table 3: Simulation Result for Case 3 
Model Basis Function            Ne 
RBFN Gaussian       0.117956 
WNN Gaussian Wavelet       0.194523 
 Mexican Hat       0.17059 
 Morlet       0.15684 
 
From Table 3, it can be observed that the accuracy 
of WNN with different types of basis function are 
comparatively close to each other. However, RBFN 
outperforms WNN since the function used in Case 3 
is an exponential function. 
 
 
5.4 Case 4: 2-D Continuous Periodic 

Function 
 
     z = 2(1-x2-y2)e-x2-y2 + sin[(x2+y2)e-(x2-y2)/2] 
 
The simulation result for Case 4 by using RBFN and 
WNN with different basis functions is shown in 
Table 4, in terms of Ne.  
 

Table 4: Simulation Result for Case 4 
Model Basis Function            Ne 
RBFN Gaussian       0.26292 
WNN Gaussian Wavelet       0.254194 
 Mexican Hat       0.174942 
 Morlet       0.114205 

  
It is shown in Table 4 that WNN with Morlet as the 
basis function performs the best in comparison to 
the others. It could probably due to the shape of 
Morlet which is more identical to the shape of the 
function in Case 4. WNN outperforms RBFN in 
estimating a periodic function due to the oscillating 
behavior of the wavelet basis function which can 
capture the characteristic of a periodic function well. 
Hence, RBFN gives the highest error in Case 4.  
 
 
5.5 Case 5: Piecewise Continuous Function 
A piecewise continuous function   
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is used in this case. Simulation result in terms of Ne 
is shown in Table 5 while the results of 
approximation of the piecewise continuous function 
above are given in Figs. 5 and 6. 
 

Table 5: Simulation Result for Case 5 
Model Basis Function            Ne 
RBFN Gaussian 0.899789 
WNN Gaussian Wavelet 2.71425e-013 
 Mexican Hat 0.752215 
 Morlet 0.650081 
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             Figure 5: Simulation result for Case 5 
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      Figure 6: Simulation result for Case 5-zoom in 

  
The function used in Case 5 is a piecewise 
continuous function, with a sharp spike at the 
interval (-0.3,-0.1). It is shown in Table 5 that WNN 
outperforms RBFN, especially in approximating the 
sharp spike, as shown in Figure 6. It is due to the 
irregular shape and fast oscillating characteristics of 
the wavelet functions, which leads them to 
approximate a function with sharp changes 
efficiently. Among all the wavelet basis functions, 
Gaussian wavelet gives the best performance. It is 
probably due to the shape of the Gaussian wavelet 
which is more identical to the piecewise function 
used in Case 5.    
 
 
5.6 Discussion 
An exponential function and a periodic function are 
approximated more accurately with RBFN and 
WNN respectively. It is mainly due to the basis 
functions that are used in the hidden nodes. WNN 
with an “oscillating” wavelet function tends to 
capture the behavior of a periodic function better 
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due to its oscillating characteristic. Hence, in Case 2 
and Case 4 which involve the approximation of a 
periodic function, it is observed that wavelet basis 
function outperforms radial basis function in terms 
of accuracy. However, in Case 1 and Case 3, where 
an exponential function is used, the accuracy of 
WNN and RBN is vice versa.  
     The function used in Case 5 is a piecewise 
continuous function. From the simulation result, it is 
observed that WNN shows a higher accuracy than 
RBFN, especially in approximating the sharp spike, 
which is shown in Figure 6. It is due to the irregular 
shape of the wavelet functions, which leads them to 
analyze function with discontinuity or sharp changes 
efficiently.    
    The wavelet basis functions used in this paper 
have the same characteristics, where they are crude, 
symmetric and have explicit expression.  
 
6   Conclusion 
This paper presents function approximation by using 
radial basis function network and wavelet neural 
network. WNN performs better in approximating a 
periodic function, whereas RBFN yields higher 
accuracy in estimating exponential function. In 
capturing the sharp spike in a piecewise function, 
WNN outshines RBFN due to its intrinsic 
characteristic.   
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