
Testing UPnP Internet Gateway Devices with Faulty Packets

Jangbok Kim1, Minsik Kim1, Kyunghee Choi1, Kihyun Chung2, Daniel Hoffman3, Kevin Yoo3
1 Graduate School of Information and Communication, Ajou University,

Suwon, 442-749, South Korea
2School of Electrics Engineering, Ajou University,

Suwon, 442-749, South Korea
3Department of Computer Science, PO Box 3055 STN CSC Victoria,

BC Canada V8N 4C9

Abstract: - UPnP devices are now widely available in the SOHO market, making device conformance and reliability
important. UPnP conformance is supported by automated test suites from the UPnP Implementor's Corporation (UIC).
While the UIC test suite is helpful, it covers normal case tests only and performs no semantic checks on the device.

We present the UPnP Device Tester (UDT), a test framework for UPnP devices. Both normal and exceptional tests are
supported and semantic checks are performed. UDT has been used to test two commercial Internet Gateway Devices,
revealing serious errors.

Key-Words: - UPnP Testing, Protocol Testing

1 Introduction
Universal Plug and Play (UPnP) is a communications
architecture and protocol standard for seamlessly
connecting devices in the SOHO (small-office/home
office) environment.

UPnP functionality is divided between devices and
control points. UPnP devices are typically small
embedded systems:

 Internet gateway devices (IGDs), such as home
routers,

 multimedia devices, such as audio and video players,
and

 home security/home automation devices.
UPnP control points are often PCs, although there are
other possibilities. The UPnP protocols are carried
primarily by HTTP over TCP/IP; Layer 2 is typically
supplied by Ethernet.

Certification of UPnP devices is controlled by the
UPnP Implementers Corporation (UIC) [1]. The UIC
provides an automated test suite used by UIC members
for device conformance testing [2]. With the test suite,
syntactically correct messages are sent to UPnP devices.
Checks for correct device behavior are limited, perhaps
because of the wide variety of UPnP device functionality.

While failure in a UPnP media player is merely
irritating, failure in an IGD or home security device can
be safety critical. Therefore, it is important to extend
UPnP testing to include abnormal network traffic.

We present a framework for automated testing of
UPnP devices. The framework purposely seeds syntactic
and semantic faults in UPnP packets. The framework has
been applied to two commercial IGDs, revealing serious
faults. The framework can easily be applied to other
UPnP device types.

Section II presents our approach to specifying faulty
packets. Section III describes the software used to
generate packets for transmission and monitor device
behaviour. Section IV summarizes the test results.

2 Fault Specification
Two types of faults were used in our tests: syntactically
faulty packets and semantically faulty packets.

2.1 Syntactic faults
The UPnP protocol consists of six phases [3].

1) Addressing. A UPnP device acquires an IP address
with DHCP or Auto IP.
2) Description. Devices announce their presence and
advertise services they provide on the network.
3) Discovery. Control points find devices and services
on the network and retrieve information about them.
4) Control. Control points use services provided by a
device.
5) Eventing. Control points monitor state changes in a
device through a publish/subscribe model.
6) Presentation. A device presents a web-based user
interface for manual control and event notifications.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 142

The first three UPnP phases occur in sequence; however,
the last three phases may occur in any order.

A UPnP message is made up of three sections: a
method declaration, a list of fields, and a body. UPnP
typically uses HTTP, but other protocols may also be
used. Figure 1 shows an example message. The method is
declared in Line 1, the fields are in Lines 3-4, and the
body is in Lines 6-8. For this paper, a UPnP message is
referred to as a Protocol Data Unit (PDU).

A PDU that contains incorrect field names or illegal or
incorrect values is considered syntactically faulty. For
instance, in the second line of Figure 1, if the field name
SOAPAction is instead spelled SOPAAction, then the
PDU contains a syntactic fault. While syntactic faults can
appear in any of the three parts of a PDU, UDT only
injects faults into the fields and body sections.

Both the body and _elds sections consist of a list of
namevalue pairs, which we'll call elements. In the field
section, an element has the following form: name: value.
In the body section, an element looks like the following:

<name>value</name>
Faults are injected into PDUs by manipulating these
elements.

UDT provides six different ways of manipulating
elements. Text can be inserted, appended, replaced,
deleted in two different ways, and duplicated. All of an
element, or just its name or value, may be modified in one
of these six ways. Therefore, there are a total of 18
different ways of creating faulty elements. Of these 18
methods, 11 are provided by UDT, as the other seven are
either equivalent to the supported methods or they do not
provide a useful syntactic fault. An example of each of
the 11 supported methods is depicted in Table 1. In the
table, xx represents text that has been added by the fault
injection method; text that has a strikethrough represents
text that has been removed. For the remainder of this
paper, faults are denoted as FOP, where O stands for one
of the six manipulation operations, and P denotes which
part of the element is being modified. For instance, when
text is inserted into an element's value, this fault is
represented as FIV. The symbol for each operation and
element part can be found in Table 1.

2.2 Semantic Faults
A PDU is semantically faulty when it cannot be

correctly processed by a device because the device is not
in the proper state. Generally, the validity of UPnP
messages is not dependent on the device state. However,
this property does not hold during UPnP's Eventing stage.
A device enters the Eventing stage when it receives a
Subscribe message, and it ends when it receives an
Unsubscribe message; a Renew message extends the
Eventing stage. While Subscribe messages can be sent at
any time, Unsubscribe and Renew messages should only
be sent during the Eventing stage. UDT sends
semantically faulty PDUs by sending Unsubscribe and
Renew messages outside the Eventing stage. Note that for
our tests, semantically faulty PDUs were syntactically
correct.

2.3 Related Work

Fault-injection methods have been used to test other
systems. Hsueh and Tsai provide an overview of a
generic fault-injection system, as well as describe
existing fault-injection tools [4]. Fault-injection testing
has been used to test web services [5] and OSPF [6]. The
ASPIRE testing tool [7] uses syntactically and
semantically faulty packets to test HTTP and SMTP.

3 Test Generation and Execution

This section explains how the tester creates faulty
packets with UDT and describes the setup and
methodology for testing IGDs.

3.1 Test Generation
To generate faulty UPnP packets, UDT requires three
input files: a PDU description file, a fault specification
file, and a test scenario file. All of these files are written
in XML.

1) PDU Description File: The PDU description file
(PDF) specifies the contents of a PDU. One file can
describe multiple PDUs, so each PDU is assigned a
unique ID which will be referenced in the test scenario
file. The PDU descriptions do not include any syntactic
faults, and so only syntactically correct PDUs are
specified. Separating the PDU description from the fault

(1) POST /uuid:0014-bf92-7b9d020099dc/WANIPConnection:1 HTTP/1.1
(2)
(3) SOAPAction: "urn:schemas-upnp-org:service:WANIPConnection:1#AddPortMapping"
(4) Content-Length: 701
(5)
(6) <?xml version="1.0" encoding="utf-8"?>
(7) <NewRemoteHost>192.168.1.11</NewRemoteHost>
(8) </s:Envelope>

Fig. 1. UpnP Message

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 143

specification improves file reusability and reduces the
tester's workload. For instance, a tester can inject
different faults into the same PDU without having to
repeatedly respecify identical PDU contents.

2) Fault Specification File: The fault specification file
(FSF) specifies where and how to insert syntactic faults
into the PDUs described in the PDF. An FSF snippet is
depicted in Figure 2, which shows how to insert faults
into the Callback element. Each OP tag corresponds to
one of the 11 syntactic fault types supported by UDT. The
fpa attribute specifies which part of the element will be
modified and fop indicates which element manipulation
operation is performed. Other attributes, such as fstart,
fstring, and flength are only applicable to certain
operations; they allow the tester to have greater control
over how the text is manipulated. All attributes are

optional, and if any are missing, then UDT randomly
assigns them values.

3) Test Scenario File: A test scenario is a sequence of
PDUs, some of which are faulty. A test scenario file
(TSF) allows a tester to specify one or more of these test
scenarios.

3.2 Test Setup
The setup used in our tests is depicted in Figure 3. A PC
running UDT was connected to one of two commercial
UPnP Internet gateway devices: IGD A and IGD B.
3.3 Test Methodology

The purpose of the tests is to determine how reliable
the two UPnP devices are when faced with syntactically
and semantically faulty PDUs. The PDUs used in our
tests are summarized in Table 2. Note that these PDUs
cover four of the six UPnP stages. The addressing and
presentation steps are not tested.

1) Syntactic Tests: Each test consists of sending one of
the PDUs in Table 2 with a single syntactic fault. There
are eleven different syntactic faults that can be injected
into a PDU field. Therefore, the total number of syntactic
tests is the total number of fields in all of Table 2's PDUs
multiplied by 11.

2) Semantic Tests: The semantic tests use the same
PDUs that are depicted in Table 2. However, no syntactic
faults are injected into these PDUs. For our tests, PDUs 5
and 6, which are used to renew and terminate
subscriptions, respectively, act as our semantically faulty
packets.

3) Oracle: For both the syntactic and semantic tests,
after a faulty packet is sent, four syntactically and
semantically correct PDUs are sent:

 A PDU that subscribes to the WANCommonIFC
service.

 A PDU that subscribes to the WANIPConn1
service.

 A PDU that terminates the WANCommonIFC
subscription.

 A PDU that terminates the WANIPConn1
subscription.

 Value (V) Name (N) Element (E)
Insert (I) <Tag>CCxxNC</Tag> <Txxag>CCND</Txxag> N/A

Append (A) <Tag>CCNCxx</Tag> <Tagxx>CCND</Tagxx> N/A
Replace (R) <Tag>CCxx</Tag> <Txx>CCND</Txx> N/A

Delete Portion (P) <Tag>CCNC</Tag> <Tag>CCNC</Tag> N/A
Delete All (Q) <Tag>CCNC</Tag> N/A <Tag>CCNC</Tag>
Duplicate (D) N/A N/A <Tag>CCNC</Tag>

<Tag>CCNC</Tag>
Table 1. Syntactic Faults

<Fault FieldName = "Callback">
<OP fpa="VALUE" fop="INSERT" fstart="3" />
<OP fpa="VALUE" fop="BLANK" />
<OP fpa="NAME" fstring="fij" />

</Fault>

Fig. 2. Syntactic Faults

Fig. 3. Test Setup

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 144

If the IGD responds to these four packets abnormally,
then it can be concluded that the faulty packet has
somehow damaged the IGD.

After the four UPnP packets are sent, a single
non-UPnP UDP packet is sent to determine if the IGD
can still forward IP packets. In this manner, the IGD's
non-UPnP functionality is tested, making it possible to
determine if breaking the IGD's UPnP functionality will
also compromise the device's other services.

4 Test Results
4.1 Syntactic Fault Test

Syntactic fault test results are grouped into three
categories, depending on how the IGD responds to the
syntactically faulty packet and subsequent UPnP
requests.

1) Correct Behavior. The IGD sends a response
packet indicating that it has received an illegally
formed UPnP packet. Subsequent UPnP packets
are handled correctly.

2) Slightly Compromised. The IGD does not send a
response packet indicating that it has received an
illegally formed UPnP packet. Furthermore, in
some cases, the IGD provides the requested UPnP

service despite the syntactic error contained in the
packet. However, subsequent UPnP packets are
handled correctly.

3) Severely Compromised. Some or all UPnP services
are no longer provided.

Table 3 summarizes the test results for both of the

IGDs. The table only shows the results for tests that
resulted in the IGD being slightly or severely
compromised. Faults injected into PDUs 2, 3, and 6 did
not produce deviant behavior in either IGD. For IGD A,
faults injected into two PDU elements resulted in the
device being severely compromised, whereas only one
syntactic fault did the same for IGD B. IGD B appears to
be particularly susceptible to faults in the body portion of
a PDU, since at least one fault in each body element
(SOAP.*) resulted in the IGD being slightly
compromised.

When IGD B was severely compromised, it did not
send any response packets nor did it provide any UPnP
services. Upon closer inspection, it was determined that
the device had closed two ports that were usually open:
UDP port 1900 and TCP port 5431.

IGD A exhibited different behavior in its severely
compromised state, as shown in Table 4. Note that the
PDU number is the same as in Table 2. Unlike IGD B,
some UPnP services, such as those in the Description and
Discovery steps, were still provided. However, Eventing
and Control services were no longer available.

For both devices, normal behavior can be restored by
rebooting the devices. Also, while both IGDs were
severely compromised, they were still able to act as
gateways. Therefore, while the IGDs were no longer able
to provide all of their UPnP services, they could still
handle non-UPnP packets correctly.

PDU Behavior
1 Correct Behavior
2 Correct Behavior
3 Correct Behavior
4 No Response
5 Error Message Sent
6 Error Message Sent
7 No Response

Table 4. IGD A Behavior when Severely Compromised

PDU
ID

Description UpnP Step # of
Elements

Element Names

1 Announce that the device has
joined the network

Discovery 3 ST, MX, MAN

2 Get information about RootDevice Description 1 Content-length
3 Get information about OSInfo

Service
Description 1 Content-length

4 Subscribe to OSInfo service Eventing 6 NT, Callback, Timeout, User-Agent, Content-length,
Pragma

5 Renew OSInfo Subscription Eventing 1 TIMEOUT
6 Terminate OSInfo Subscription Eventing 3 User-Agent, Content-Length, Pragma
7 Request to perform a service Control 11 SOAPAction, CONTENT-TYPE, Content-Length,

SOAP.NewRemoteHost, SOAP.NewExternalPort,
SOAP.NewProtocol, SOAP.NewInternalPort,

SOAP.NewInternalClient, SOAP.NewEnabled,
SOAP.NewPortMappingDescription,

SOAP.NewLeaseDuration

Table 2. Test PDUs

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 145

4.2 Semantic Fault Test
Renew and Unsubscribe messages were sent at three
different times:

1) Before a Subscribe PDU was sent.
2) After a Subscribe/Unsubscribe pair was sent.
3) After a subscribe message was sent, and after the

subscription had expired. UPnP subscriptions
automatically expire after a certain amount of time
has elapsed.

In each of the above cases, both IGDs A and B dealt
with these semantically faulty packets correctly; an error
message was sent, and subsequent packets were handled
correctly.

5 Conclusion
UPnP devices are now widely available in the SOHO
market, making device conformance and reliability
important. While the UIC test suite is helpful, it covers

normal case tests only and performs no semantic checks
on the device.

We have presented UDT, a test framework for UPnP
devices which supports normal and exceptional tests, and
semantic checks. UDT has been used to test two
commercial Internet Gateway Devices, revealing serious
errors. By modifying UDT's Fault Speci_cation Files and
PDU Description Files, UDT can be easily applied to
testing other UPnP device types.

6 Acknowledgements
This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the
ITFSIP(IT Foreign Specialist Inviting Program)
supervised by the IITA(Institute of Information
Technology Advancement). This research was also
supported by the KAI(Korea Aerospace Industries).

PDU Element IGD A IGD B
Minor Error Severe Error Minor Error Severe Error

1 ST FDF
MX FDF

MAN FDF
4 NT FIV, FAV, FRV, FPV, FQV,

FDF
 FIV, FAV, FRV, FPV, FQV,

FIN, FAN, FRN, FPN, FDF,
FQF

CallBack FIV, FAV, FRV, FPV, FDF FRV, FPV FIV, FAV, FPV, FDF, FQF
TimeOut FIV, FAV, FRV, FPV, FQV FIV, FAV, FRV, FPV, FQV,

FDF
FIN, FAN, FRN,

FPN, FQF
5 TIMEOUT FIV, FAV, FRV, FPV, FQV,

FQF
 FIV, FAV, FRV, FPV, FQV,

FDF
FIN, FAN, FRN,

FPN, FQF
7 SOAPAction FIV, FDF FIV, FAV, FRV, FPV, FQV,

FIN, FAN, FRN, FPN, FDF,
FQF

CONTENT-TYPE FIV, FAV, FRV, FPV, FQV,
FIN, FAN, FRN, FPN, FDF,

FQF

 FIV, FAV, FRV, FPV, FIN,
FAN, FRN, FPN, FQF

Content-Length FAV, FDF FAV
SOAP.NewRemoteHost FIV, FAV, FRV, FPV, FQV,

FAN, FDF
 FRV

SOAP.NewExtenalPort FAN, FDF
SOAP.NewProtocol FIV, FAV, FRV, FPV, FQV,

FAN, FDF
 FAV, FRV

SOAP.NewInternalPort FAN, FDF
SOAP.NewInternalClient FIV, FAV, FRV, FPV, FQV,

FAN, FDF

SOAP.NewEnabled FAN, FDF FIV, FAV, FRV, FPV, FQV
SOAP.NewPortMappingD

escription
FIV, FAV, FRV, FPV, FQV,

FAN, FDF

SOAP.NewLeaseDuration FAV, FDF FIV, FPV, FQV

Table 3. Syntactic Fault Test Results

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 146

References:
[1] Upnp implementers corporation,

http://www.upnp-ic.org.
[2] Upnp device certi_cation process document version

1.0,
http://www.upnp.uic.org/docs/CERTIFICATION_O
F_UPnP_DEVICES_FINAL_10_29_01.pdf.

[3] M. Jeronimo and J. Weast, UPnP Design by
Example: A Software Developer's Guide to Universal
Plug and Play. Intel Press, 2003.

[4] M. Hsueh, T. Tsai, and R. Iyer, Fault injection
techniques and tools, Computer, vol. 30, no. 4, pp.
75.82, 1997.

[5] W. Tsai, R. Paul, W. Song, and Z. Cao, Coyote: an
xml-based framework for web services testing, in Proc.
of the 7th IEEE Int. Symposium on High Assurance
Systems Engineering (HASE'02), 2002, pp. 173.174.

[6] O. Tal, S. Knight, and T. Dean, Syntax-based
vulnerability testing of frame-based network
protocols, in Proc. 2nd Annual Conf. on Privacy,
Security and Trust, 2004.

[7] A. Vasan and A. Memon, Aspire: Automated
systematic protocol implementation robustness
evaluation, in Proc. of the 2004 Australian Software
Engineering Conference (ASWEC'04), 2004, pp.
241.250.

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007 147

