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Abstract: - Reliable localization is an essential component of a successful Autonomous Aerial Navigation. In 
order to get a precise position before navigation uncertainty becomes incorrigible, the main objective of this 
work is to investigate efficient algorithms for localization estimation for Autonomous Aerial Navigation by 
matching Images with Different Resolutions. In this work, we present an approach to localize the UAV 
(Unmanned Aerial Vehicle) in flight using matching images with different resolutions: a high-resolution image 
and a low-resolution one. This method consists of firstly to detect the landmarks or feature points in the images 
using the Harris corner detector. Secondly the method consists of automatic extraction of correspondence points 
between the first UAV video frame and a georeferengeced image. Finally we use a geometric model estimation 
to map the high-resolution image onto a low-resolution image, which results in position estimation of the UAV. 
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1 Introduction 
In recent years the UAVs (Unmanned Aerial 
Vehicles) have become an important and highly 
suitable means for tasks such as: (i) remote sensing, 
(ii) surveillance and (iii) monitoring the terrestrial 
surface.  
The most important objective in UAV’s autonomous 
navigation research is to avoid human control during 
all flight. Its advantage is to increase the vehicle 
range beyond the radio frequency control.  
The most common commercial navigation system for 
UAV (Unmanned Aerial Vehicle) is based on signal 
fusion between an Inertial Navigation System (INS) 
with an Inertial Measurement Unit (IMU) and a 
Global Navigation Satellite System (GNSS) [10]. 
Although some papers are being done with this 
approach, problems can occur during GNSS signal 
reception or with INS precision.   
The methodology suggested in this work is the use of 
computer vision techniques to provide a robust 
algorithm to localize the UAV in flight. The system 
compares images from an onboard camera with a 
georeferenced image, stored previously in the 
system’s memory to find similar features in both 
images, and then estimates the UAV’s position 

through the feature coordinates extracted from the 
georeference image.  
The computer vision system has to capture video 
ground images and compare them with georeferenced 
images in order to get a precise position before 
navigation uncertainty becomes incorrigible. In this 
paper it’s considered that the aerial vehicle has at 
least one inertial navigation systems (INS) onboard, 
sending data to a hypothetical navigation system to 
control the UAV. So, the computer vision system 
must frequently calculate the position and update the 
INS as often and as accurately as possible. 
In this work, we describe an approach to estimate the 
localization of the UAV using matching images with 
different resolutions: a high-resolution image and a 
low-resolution one. The high-resolution images are 
video frames obtained from a camera fixed to a 
helicopter in a low level flight, simulating the vision 
system of an UAV. The low-resolution images are 
obtained from georeferenced images. This method 
consists of three main steps: The first step is to detect 
the landmarks or feature points in the images. This is 
done using the Harris corner detector [6]. The second 
step consists of automatic extraction of 
correspondence points between the first UAV video 

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    404



frame and a georeferenced image. Finally we use a 
geometric model estimation to map the high-
resolution image onto a low-resolution image, which 
results in position estimation of the UAV. This paper 
is organized as follows: Section 2 gives some 
information about the images used in this work. 
Section 3 describes the algorithm with the details of 
each step. Sections 4 and 5 discusses the results and 
presents some conclusions. 
 
2   Data Preparation 
The initial task is the selection of images, which will 
be used in the algorithm. The scene represents the 
soccer stadium of São José dos Campos in São Paulo 
State (Brazil).  
The first image is referred to the high-resolution 
image acquired by a camera fixed to a helicopter and 
presents some degradation due to interlacing process. 
This degradation is due to aircraft vibrations during 
the acquisition process. So, a pre-processing 
operation based on low-pass filter allows improving 
the original image. Fig.1 shows the degraded high-
resolution image while Fig.2 displays the pre-
processed image. 
The second image is referred to the low-resolution 
image obtained from georeferenced images and 
represents the same scene of the high resolution 
image i.e. the soccer stadium of São José dos Campos 
in São Paulo State (Brazil). Fig.3 shows the low-
resolution image. 
 
 

 
Fig.1: Original frame image. 

 
 

 
Fig.2: Pre-processed frame image. 

 
Fig.3: Original georeferenced  

image. 
 
3. Algorithm 
The algorithm used in this work to estimate the 
localization of the UAV by matching images with 
different resolutions proceeds as follows: 
• Feature extraction - In each image we extract 
salient structures (features) based on Harris corner 
detector at multi-scale, and determine their 
characteristic scale. It is important to point out that 
the Harris corner detector is computed only once for 
low-resolution images while for high-resolution ones 
the Harris detector is employed for each scale. 
Features points extracted by Harris detector are 
described by a vector of invariant descriptors. 
• Feature matching - Compute putative matches 
between image features based on the Mahalanobis 
distance using the invariant descriptors. 
• Geometric model estimation – Estimate the 
parameter vector of a linear transformation which 
allows mapping the high-resolution image onto a 
low-resolution one. 
 
3.1 Feature Extraction 
Salient points are landmarks in an image often called 
interest points point of interest, and have special 
properties which make them stand out in comparison 
to its neighboring points. These features should be 
important dominant points of distinctive objects in 
images and their detection is an important task in 
further processing. Much of the work on two-
dimensional features have concentrated on corners, 
that is, features formed at boundaries between two 
significantly dissimilar image brightness regions, 
where the boundary curvature is sufficiently high. 
However, many other types of localized structure 
arise, for example, ‘‘T’’,‘‘X’’ and ‘‘Y’’ junctions, 
and these multi-region junctions should also be 
considered. According to Deriche [2], the corner can 
be defined as image points belonging to a contour 
where the contour presents a local maximum 
curvature or as the intersection of two o more 
contours. 
In many computer vision tasks such as: image 
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registration, image matching, object recognition and 
motion analysis, accurate corner detection is 
essential. 
The notion of interest point was introduced for the 
first time by Moravec [9]. His detector is based on the 
autocorrelation function of the signal. It measures the 
gray value differences between a window and a 
window shifted in the four directions parallel to the 
rows and columns. An interest point is detected if the 
minimum of these four directions is superior to a 
threshold. 
Harris and Stephens [6] defined a similar detector to 
that of Moravec, but whose several defects were 
corrected. For instance, the Moravec response is 
anisotropic, i.e. the local autocorrelation is only 
calculated in four directions, the response is noisy, as 
the profile of the “window” used for finding the 
autocorrelation is square and binary. On other hand, 
the Harris detector as it is always called, considers all 
possible directions to compute the intensity variation. 
The local auto-correlation function measures the local 
changes of the signal with patches shifted by a small 
amount in different directions. Besides, the 
“cornerness” is calculated using only the first 
derivatives of the intensity. A circular Gaussian 
smoothing window overcomes the problem caused by 
the rectangular binary window. This corner detector 
is quite robust against noise. 
Comparisons between several algorithms, Schmid 
Bensebaa et al. [13] have shown that the Harris corner 
detector reaches the best repeatability rate for 
moderate changes of the imaging conditions. 
Moreover, the improved Harris version has proven 
invariance against image noise. 
In general, there are a lot of corner detection 
techniques in the literature, each one with its 
advantages and drawbacks. However, due to its 
advantages (strong invariance to: rotation, 
illumination variation and image noise), the Harris 
corner detector was chosen in this work as method 
interest point extraction. Besides, the Harris multi-
scale version proposed by Dufournaud et al. [3] is 
also used in this work. 
In the next sections we present the Harris corner 
detector standard and its improved version and 
multiscale version. 
 
3.1.1 Harris detector  
As mentioned above Harris corner detector improved 
the approach of Moravec and became a popular 
interest point detector due to its strong invariance to: 
rotation, illumination variation and image noise. This 
detector uses the auto-correlation function to 
determine locations where the signal changes in two 
dimensions. Thus to compute a matrix related to the 

autocorrelation function of the image, the algorithm 
begins by computing the gradient of the image I in 
horizontal and vertical direction i.e. we compute the 
gradient Ix and Iy using a discrete one-dimensional 
mask: 
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In the Equation (3) G is a Gaussian used to 
weight the derivatives summed over the window.  
This Gaussian G is described as follow: 
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The eigenvalues λ1 e λ2 of matrix M correspond to the 
principal curvatures of the autocorrelation function. 
Thus, if both eigenvalues are large, a corner is found, 
and if one is large and the other small, this signals an 
edge. The isotropic nature of the Harris detector 
makes it fully rotation-invariant.  
To avoid explicit eigenvalues decomposition, Harris 
and Stephens devise a measure using the determinant 
and trace of the matrix M. Thus, the so-called corner 
response function (“cornerness”) R used for corner 
detection is based on the determinant and the trace of 
matrix M  given by: 
 

)(trace.)det( 2 MMR k−=  (6)
where 

2
21.)det( CAB −== λλM  (7)

and 
BA +=+= 21)(trace λλM  (8)
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and where the factor k determines the maximum 
ratio of eigenvalues for which R is positive. We 
use k=0.04 as suggested by Harris. The pixel 
positions of the detected points are found at local 
maxima of R above the given threshold T (T > 0).  
 
3.1.2 Improved Harris detector 
It is known that the calculation of the derivative is a 
complex problem, even some small noise can greatly 
modify the result. Therefore, for all derivation 
calculation it is therefore necessary to do a 
smoothing. 
So, according to Schmid at al [13] the improved 
version of Harris, derivatives are computed more 
precisely by replacing the discrete one-dimensional 
mask with derivatives of Gaussian. Mathematically, 
this is equal to filtering the image with a Gaussian 
filter before calculating the gradient. This improved 
detector resists therefore to the noise better than the 
original Harris detector. Moreover, it is important to 
note that this detector have a better repeatability rate 
of interest points, in the presence of relative rotation 
[13]. Equation (9) and (10) represent respectively the 
autocorrelation matrix and the cornerness measure of 
the improved Harris detector. 
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where )~(σG represents the Gaussian smoothing. 
Remark that smoothing factor and the weighting factor 
are not necessarily equal. 
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3.1.3 Multiscale Harris detector 
The Harris detector is the most robust against, 
rotation invariance, noise, and illumination 
conditions, but fails in the presence of scale changes 
between images. In order to deal with such a 
transformation Dufournaud et al. [3] proposed the 
scale adapted Harris operator. The points are detected 
at the local maxima of the Harris function applied at 
several scales. 
Thus, the interest point detector at scale sc is defined 
by: 
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and the cornerness measure is the following: 
( ))(trace)det( 24

sss MMR α−= sc  (12)
 

Fig. 4 and Fig. 5 show the interest points detected 
using the multiscale Harris detector. In the image 
frame (Fig.5), the number of points detected 
decreases when the scale  s increases. 
 

 
Fig.4: Georeferenced image with  

corners detected. 
 

 
Fig.5: Frame image with corners  

Detected (scale 2.4). 
 
3.2 Feature Matching 
Image matching is an essential aspect of many 
approaches to problems in computer vision, including 
object recognition stereo matching, and motion 
tracking. In fact, several algorithms exist in the 
literature for the automatic point matching, even so in 
spite of researchers efforts, the problem is extremely 
complex and there isn’t yet an automatic solution that 
gives good results in most of the cases. For this 
reason, many researchers are still working on this 
topic. 
In general, techniques to find candidate matches in a 
pair of images mainly belong to two classes [8]:  
• The feature matching approaches: these 
algorithms extract salient primitives from the images, 
such as edge segments or contours, and match them. 
• The iconic approaches: these ones use directly 
the signal information for matching points. These 
approaches are based on correlation methods and 
differential invariants methods. The first iconic 
method is one of most popular techniques and has the 
main advantage to give very good results. However, 
this method is very time consuming [5]. The second 
iconic method is one of more recent techniques. This 
technique work on gray level images and consists in 
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characterizing points by using differential invariants 
of the signal. 
Thus, a prominent approach to image matching has 
consisted of identifying “interest points” in the 
images, finding photometric descriptors of the 
regions surrounding these points and then matching 
these descriptors across images [1].  
 
3.2.1 Differential invariants based matching 
methods 
A set of derivatives in a point of the visual space, 
calculated until a certain order, allows characterizing 
the structure of the signal in the neighborhood of this 
point. Thus, in order to characterize the local signal in 
a rotationally invariant way, Koenderink and van 
Doorn [7] and Romeny et al. [11] computed a set of 
differential invariants from the “ local jet”. In fact, for 
each interest point detected, one associated a vector 
of a certain number of components, which are values 
invariant to a certain number of transformations, such 
as: illumination variation or rotation. In our 
methodology, we have limited the set of invariants to 
the second order. Adopting the notation of Schmid 
and Mohr [12], the differential invariant vector V  is 
given by the Equations (12) and (13). 
Equation (12) shows the elements of the differential 
invariants V  in tensorial notation – the so-called 
Einstein summation convention while Equation (13) 
shows the differential invariants in Cartesian 
notation:  
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3.2.2 Similarity Measure  
To compare features of different interest points a 
distance or similarity measure is needed. The most 
often used measures in literature are the Euclidean 
and Mahalanobis distance. 

The distance we used is the Mahalanobis distance 
given by:   

)()(),( 21
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M −Λ−= − (14)

 
where 1v  and 2v v2 are two descriptors and Λ  is the 
covariance matrix of V .  
The covariance matrix Λ is symmetric and positive 
definite then its inverse can be decomposed in the 
following way: 

PDDPDPP TT ==Λ−1  (15)
 
where P is an orthogonal and D diagonal matrix. 
Then, the Mahanalobis distance dM can be rewritten 
as: 

2
12

2
21 ),( vPDvPDvvd M −=  (16)

 
Therefore calculate the Mahanalobis distance 
between two vectors is equivalent to transform these 
two vectors multiplying them by the matrix 

PD and then calculate the Euclidean distance 
between these vectors. 
 
3.3 Geometric model estimation 
 
3.3.1 Geometric Transformation 
After the feature correspondence has been established 
(second step of the methodology), the task consists of 
choosing the type of the mapping function and its 
parameter estimation. 
Thus the geometric model used is based on similarity 
transformation. A basic image similarity-based 
method consists of a transformation model, which is 
applied to test image coordinates to locate their 
corresponding coordinates in the georeferenced 
image. 
In this work, the idea behind matching methods is to 
search for the best matching while permitting the 
rotation, translation and scaling (to be called 
alignment by similarity transformation) 
Let (u,v) be the point coordinates of georeferenced 
image and let (x,y) be the point coordinates of frame 
image. 
Then a point (x,y) present in frame image is related to 
point (u,v) of the georeferenced image by linear 
geometric transformation as follows: 
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where s is an arbitrary scaling factor, θ  is an arbitrary 
rotation and (tx,ty) is an arbitrary shift. 
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The Equation (17) becomes 
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with  a = s.cosθ  and b= s. sinθ 
The four unknown parameters of our model are: a, b, 
tx, ty.. 
Then, we have a linear system as: 

bx =A  (19)
The similarity transformation, Equation (18) which 
have four unknown parameters is estimated by 
solving the system of Equation (19). Note that for 
each point the transformation gives two equations, 
one for each coordinate. 
Thus, the best way to solve the system of the 
Equation (19) is to perform singular value 
decomposition of the matrix A.  
The least-squares solution for the parameters x can be 
determined by solving the corresponding normal 
equations, 

[ ] bx T1T AAA
−

=  (20) 

which minimizes the sum of the squares of the 
distances from the model locations to the 
corresponding matched points locations. 
 
3.3.2. RANSAC Algorithm 
The key idea of this algorithm is to match images at 
different scales. Since there is a strong relationship 
between scale and resolution, the method proposed in 
this work allows automatically matching points 
between two images with different resolutions (the 
high-resolution image and low-resolution one. During 
the matching process the scale factor related with the 
high-resolution image is chosen to increase 
monotonically and this process attempts to find which 
one of these images best matches a region in the low-
resolution image. The similarity transformation 
shown in Equation (18) is reliable to find the 
parameters, which allows finding the optimal 
coordinates of estimated position of the UAV. 
However, as we need to select the best 
correspondents points between two images at 
different scales, we need a robust algorithm for this 
task. In this sense the RANSAC algorithm proposed 
by Fischler and Bolles [4] takes as input the potential 
one-to-one point assignments, computes the best 
transformation between the two images, and splits the 
point assignments into two sets: inliers and outliers 
[3].  
The RANSAC algorithm (RANdom SAmple 
Consensus) is most popular approach for this robust 
estimation problem algorithm, even though several 
variants have been developed. This algorithm 
facilitates to distinguish inliers matching points and 

outlier ones. Thus, beginning from a subset of points 
the parameters of transformation model are estimated 
and the number of inliers and outliers are computed. 
Note the smaller the initial subset, the smaller the 
probability to detect outliers. This process, repeats 
until itself reached a certain degree of satisfaction: for 
instance a probability (usually 95%) to have chosen a 
subset of inliers after N trials. 
 
Thus, the RANSAC algorithm is based on the 
following steps: 
1. Randomly select a sample of s data points from S 

and instantiate the model from this subset; 
2. Estimate the parameters a, b, tx, ty of the model 

(Equation 18); 
3. Determine the set of data points Si which are 

within a distance threshold d of the model. The 
set Si is the consensus set of samples and defines 
the number of inliers of Si  and save it and save 
the estimated parameters a, b, tx, ty ; 

4. If the subset of Si is greater than some threshold 
d, re-estimate the model using all the points in Si 
and terminate;  

5. If the size of Si is less than d, select a new subset 
and repeat the above. 

6. After N trials the largest consensus set Si is 
selected, and the model is re-estimated using all 
the points in the subset Si.  

 
There are three important parameters to define in the 
RANSAC algorithm: the number of s samples, the 
threshold value d and the number of trials N. 
• The first one (number of samples s) must be 
smaller since it allows to minimize the detection of 
outliers; 
• The second one (the threshold d) must be chosen 
according of measures characteristic. In the 
RANSAC algorithm, only the points whose Eulidean 
distance is lower to threshold d are kept. When we 
process data with noise, it is preferable to use 
Mahalanobis distance than Euclidean distance; 
• The third parameter is the number of the trials N.  
The ideal number of trials is to consider all possible 
combinations. However this can be very expensive in 
calculation time. The number of N must be taken 
sufficiently great to have p probability, often equal to 
0.99 that allows to have one of the trials N which 
results to have none oulier. This number depends 
therefore greatly of the proportion of inliers points in 
the data. The next Equation gives the number of the 
trials N related to probability p and the proportion ε 
of the outliers contained in the data. … 

))1(1((log/)1(log spN ε−−−=  (21)
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The five steps of the  RANSAC algorithm are utilized 
for each scale. Then, for each scale we save the 
greatest number of inliers and the estimated 
parameters of the model. Finally we choose which 
scale has the greatest number of inliers and we use 
the Equation (17) to map the high-resolution image 
onto a low-resolution image, which result on UAV 
position estimation. 
. 
4. Results 
In our experiments we have used the following scale 
factors: 1.4, 1.8, 2.4, 2.8, 3.4, 4.4. 
We have obtained the highest value of inliers using 
the scale factor 2.4. 
By using the similarity transformation (Equation 18) 
we have obtained the estimated position in the 
georeferenced image (Fig. 8) based on the 
coordinates of the frame image in Fig. 7. 
 
 

 
Fig.7: Frame image after  

mapping.   
 

 
Fig.8: Georeferenced image after  

mapping 
 
5. Conclusion 
An algorithm for detection interest points, matching 
them and the use a geometric model to mapping two 
images was presented in this paper. Our primary 
motivation behind the development of this algorithm 
was its use in reliable and efficient localization 
estimation for autonomous aerial navigation. Due to 
the difference in terms of resolution between frame 
images and georeferenced images, the methodology 
proposed was to consider the matching process in 

different scales. Experimental results shown that the 
parameters estimated allowed a reasonable 
performance of the UAV position estimation. 
In the work described in this paper, we have assumed 
that the aerial images are taken from a nadir view. 
However, future works will address to investigate 
approaches using images taken from oblique view. 
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