
Defining Processing Elements in Dependence Graphs from for-do
Programming Constructs.

STAVROS DOKOUZYIANNIS
Aristotle University of Thessaloniki

Department of Electrical and
Computer Engineering

Egnatia St, 54124
GREECE

 

ARGIRIS MOKIOS
Aristotle University of Thessaloniki

Department of Electrical and
Computer Engineering

Egnatia St, 54124
GREECE

 

Abstract:The modeling of processing elements (PEs) in dependence graphs (DGs), defined on 2 and 3 level for-do
constructs, is presented. Dependence graphs model algorithms described by computer languages, like Fortran,
Pascal, C, and C++ and are developed in cases when the mentioned algorithms are to be implemented in FPGA or
embedded hardware, in the form of shift-invariant and systolic processing arrays. The paper is focused on defining
the function and the input/output signals of the PEs that areused to build shift-invariant DGs.

Key–Words:Dependence graphs, processing elements, parallel algorithms

1 Introduction
The FPGA and other embedded hardware implemen-
tations of computer language algorithms (Fortran,
Pascal, C, C++) have significant importance in digital
design. They support numerous scientific areas like
DSP applications, image processing, digital filtering,
cryptography, computer arithmetic [1, 2, 3, 4, 5, 6, 7]
and many others.

Presently, the automated FPGA/embedded hard-
ware implementation is feasible through VHDL
frameworks (ALTERA, Xilinx and other platforms).
The programming constructs defined on VHDL are
quite circuit compatible, so that the compilation of
language structures is based on available equivalent
models and structures. In oppose to VHDL, and
although loops in algorithms have been studied for
decades [8], there is not an available procedure which
could compile a computer program algorithm onto
a complete DG model. Thus, the existing transfor-
mations relate to very regular algorithms, like matrix
multiplication, convolution or signal processing appli-
cations [9, 10, 11], where the definition of DGs is a
result of intuitive work, and it is usually available for
low orders of complexity. The regularity of the DG
structure is characterized by the term shift-invariance
[12] and is the basis for defining iterative constructs
by the DG format.

The systolic array [13] is one of the computa-
tional models which is implementable on FPGA de-
vices, because it allows the modeling of algorithms
by a set of regularly situated processing elements

(consisting of computer arithmetic circuits as well as
FSMs), interconnected by edges demonstrating the in-
terrelations between them.

This paper concentrates on defining PEs in DGs,
i.e., the input/output signals and the performed logical
functions, based on a graphical and easily understand-
able approach. The presentation is limited to 2 and 3-
level for-do programming language constructs, since
it is only possible to illustrate2 and3−Dimensional
DGs on the Euclidean space.

In Section 2 the multiplication of a matrix by a
vector is demonstrated, along with the proposed PE
modeling methodology. In Section 3, an extension to a
matrix by matrix multiplication is presented. The later
multiplication example provides a symmetric place-
ment of the PEs on the DG and is understated as a
model for the derivation of PE design of higher order
for-do constructs in the near future (section 4). Sec-
tion 5 summarizes the conclusions.

2 Building processing elements of a
Matrix-Vector multiplication.

Initially, the case of a matrix-vector multiplication,
i.e., c = A · b, is studied.A andb are ann × n ma-
trix and ann× 1 vector respectively. The elements of
vectorc are calculated from (1),

ci =

n−1∑

j=0

aij · bj (1)

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     15



Figure 1: Initial state where all values of matrixA and
vectorb are presented. The red colored dotted dashed
line contours depict elementsa[i][j] : i, j = 0, 1, 2, 3.
The blue colored dashed line contours depict elements
b[j], j = 0, 1, 2, 3.

wherei = 0, 1, . . . , n − 1 and the termsaij and bj

correspond to the elements of matrixA and vectorb.
Equation (1) can be realized in a computer system by
the sequential code that follows:

1: for i = 0, i < n − 1 do
2: for j = 0, j < n − 1 do
3: c[i] = c[i] + a[i][j] · b[j];
4: end for
5: end for

When this code segment is executed on a com-
puter system, line 3 is evaluated starting from the right
hand side, where the producta[i][j] · b[j] is calculated
and then added to the current value ofc[i]. This value
is stored as the next value ofc[i]. The execution order
of the computations is controlled by the system com-
piler, imposing a software control method. Since this
mechanism is unavailable in processor arrays imple-
mentations, specific hardware design techniques have
to be proposed to realize this behavior.

The transformation of this 2-level for-do loop
onto a shift-invariant DG will be realized by examin-
ing line by line the corresponding programming code.
Fig. 1 is used to illustrate the analysis that is going to
follow, where matrixA and vectorb are represented
by red colored dotted-dashed line and blue colored
dashed line contours, respectively.

The execution of line 3 is examined initially, for
i = 0 andj = 0, 1, 2, 3, i.e.:

1: c[0] = c[0] + a[0][0] · b[0];
2: c[0] = c[0] + a[0][1] · b[1];
3: c[0] = c[0] + a[0][2] · b[2];
4: c[0] = c[0] + a[0][3] · b[3];

which is illustrated in Fig. 2. During the first
step the values ofa[0][0] andb[0] are multiplied, thus
on Fig. 2a only the corresponding cells are empha-
sized. The fact that these cells intersect is interpreted
as their ability to interact, i.e., perform the multiplica-
tion a[0][0] · b[0]. In a similar fashion, Fig. 2b, 2c, and
2d illustrate the derived partial productsa[0][1] · b[1],

a[0][2] · b[2], anda[0][3] · b[3] respectively. In order to
calculate valuec[0] all the previously generated par-
tial products have to be added together. This action is
represented by the insertion of indexj in variablec,
thus line 3 of the initial algorithm becomes:

c[i][j] = c[i][j − 1] + a[i][j] · b[j];

This code is considered as a single assignment
code, since every variable is assigned one value only,
during the execution of the algorithm. The modified
code is graphically presented in Fig. 3. The front
black coloured solid line contour, in Fig. 3a, de-
fines the accumulated partial product of the previous
step that is used to produce the current result, corre-
sponding to the rear black coloured solid line contour.
Again, the fact that these cells intersect, is interpreted
as their ability to interact, i.e., perform the required
addition besides the previously mentioned multiplica-
tion. It is noted that in the first step there is no previous
partial product, i.e.c[0][−1] = 0. In a similar fashion
Fig. 2b, 2c, and 2d illustrate the derived accumulated
partial productsc[0][1], c[0][2], andc[0][3].

The performed computations are visualized, in-
troducing avirtual cube. Each side of the cube that
is illustrated with a distinct contour, corresponds to a
value that is inserted or extracted from it, according to
the direction of the calculations defined by the indices
ordering. If the dimensions of matrixA were set to
4×4 and of vectorb to 4×1 thenc[0][3] would be the
first element of the new vectorc.

Analyzing further the algorithm, line 3 is exe-
cuted fori = 1 andj = 0, 1, 2, 3. During the first step
the values ofa[1][0] andb[0] are multiplied. The cor-
responding cells don’t intersect, thus not all the values
required to perform the multiplication are available lo-
cally. Specifically, valueb[0] has to be broadcasted to
the current cube where valuea[1][0] resides.

2.1 Converting program code to recursive
form.

In order to make the necessary values locally avail-
able, indexi is inserted in variableb and the matrix
vector multiplication algorithm is transformed into:

1: for i = 0, i < n − 1 do
2: for j = 0, j < n − 1 do
3: b[i][j] = b[i − 1][j];
4: c[i][j] = c[i][j − 1] + a[i][j] · b[i][j];
5: end for
6: end for

The algorithm is now in alocalized formsince all
the variables are, only, directly dependent upon the
variables of their neighboring node. Declaring index
j as the recursion index, the algorithm may be con-
sidered as a localized recursive algorithm. In Fig. 4

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     16



(a)a[0][0], b[0] (b) a[0][1], b[1] (c) a[0][2], b[2] (d) a[0][3], b[3]

Figure 2: Execution of the code for valuesi = 0 andj = 0, 1, 2, 3

(a)a[0][0], b[0], c[0][−1], c[0][0] (b) a[0][1], b[1], c[0][0],
c[0][1]

(c) a[0][2], b[2], c[0][1],
c[0][2]

(d) a[0][3], b[3], c[0][2],
c[0][3]

Figure 3: Insertion of indexj in variablec

(a)a[1][0], b[0], c[1][−1], c[1][0]

(b) a[1][3], b[3], c[1][2],
c[1][3]

Figure 4: Insertion of indexj in variableb

the insertion of indexi to variableb is depicted by the
rightmost blue coloured dashed line contour that rep-
resents the transmission of valueb[0] to the next cube.
Since the cells intersect, the required computations are
performed and vectorc is generated.

2.2 Determination of the processing ele-
ments.

The virtual cubes, introduced so far to the matrix-
vector multiplication example, form the basis for the
PE design, in general. The transformation requires 4
steps:

Step 1: Every virtual cube generates its corre-
sponding PE in the DG.
Step 2: The computations realized in each virtual
cube determine the function assigned to the respec-
tive PE.
Step 3: For any two neighboring PEs, an inter-
connection arc is generated, if the adjacent sides
of their respective virtual cubes have the same line
style colored contour. The direction of the gener-
ated arc is defined by the chronological sequence
of the computations.
Step 4: The initial surfaces become the primary in-
put signals of the DG.

Fig. 5 represents the resulting PE, derived accord-
ing to the proposed method, while Fig. 6 presents the
resulting DG.

3 Matrix-Matrix multiplication
Having already studied the derivation of a DG for a
matrix-vector product algorithm, the case of a two
n × n matrices,A and B, multiplication algorithm
can also be examined. The formula that calculates the

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     17



(a) (b)

Figure 5: (a) Virtual cube, and (b) the resulting pro-
cessing element (PE).

Figure 6: Dependence graph modeling the shift-
invariant multiplication of a4 × 4 matrix and a4 × 1
vector.

elements of the product is given in (2).

cij =

n−1∑

k=0

aik · bkj (2)

Termsaik andbkj represent the elements of matrices
A andB. From (2), the following sequential code is
derived:

1: for i = 0, i < n − 1 do
2: for j = 0, j < n − 1 do
3: for k = 0, k < n − 1 do
4: c[i][j] = c[i][j] + a[i][k] · b[k][j]
5: end for
6: end for
7: end for

The resulting surfaces of matricesA and B, as
well as, their constitutive elements are presented in
Fig. 7.

3.1 Converting the code to recursive form.
Working as in the previous example, the algorithm is
initially transformed in a single assignment form, in-
serting indexk to variablec. Moreover, indicesj and
i are inserted to variablesa andb, respectively, in or-
der to overcome the burden of broadcastingaik to all
cubes with the samei andk coordinates, andbkj to
all cubes with the samek andj. Consideringk as the
recursion index, the algorithm obtains the following
locally recursive form:

1: for i = 0, i < n − 1 do

Figure 7: Initial state where all values of matrixA
andB are presented. The red colored dotted dashed
line contours depict elementsa[i][k] : i, k = 0, 1, 2, 3.
The blue colored dashed line contours depict elements
b[k][j], k, j = 0, 1, 2, 3.

2: for j = 0, j < n − 1 do
3: for k = 0, k < n − 1 do
4: a[i][j][k] = a[i][j − 1][k]
5: b[i][j][k] = b[i − 1][j][k]
6: c[i][j][k] = c[i][j][k − 1] + a[i][j][k] ·

b[i][j][k]
7: end for
8: end for
9: end for

Examining the execution of the algorithm fori =
3, j = 2 andk = 0, 1, 2, 3 the snapshots of Fig. 8
are created. The values of matrixA andB are trans-
mitted from cube to cube as they are being used for
the computation of the partial products. This behavior
is represented by the red colored dotted-dashed and
blue colored dashed line contours that are repeated
throughout the design. In the same fashion the ini-
tial partial product generated every timej = 0, is
transmitted to the next cube in order to generate the
next accumulated partial product. Thus, every cube
except the first one, receives the accumulated partial
product and transmits the one that it produces. This
is depicted by the bottom and top black colored solid
line contours of Fig. 8. The cells withk = n − 1
produce the final results.

3.2 Processing elements and dependence
graph derivation.

Given the virtual cube of Fig. 9a, the resulting PE
is given in 9b, after following the methodology pro-
posed in Section 2.2. The DG that corresponds to the
product of two4×4 matrices, is presented on Fig. 10.

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     18



(a) a[3][0], a[0][2], a[3][2][−1],
a[3][2][0]

(b) a[3][1], a[1][2], a[3][2][0],
a[3][2][1]

(c) a[3][2], a[2][2], a[3][2][1],
a[3][2][2]

(d) a[3][3], a[3][2], a[3][2][2],
a[3][2][3]

Figure 8: Execution of the code for valuesi = 3, j = 2 andk = 0, 1, 2, 3

(a)

(b)

Figure 9: (a) Virtual cube and (b) the resulting pro-
cessing element (PE).

Figure 10: Dependence graph modeling the shift-
invariant multiplication of two4 × 4 matrices.

4 Higher-level for-do programming
constructs.

The case of higher-level constructs have to be fur-
ther examined. Instead of graphical modeling steps,
as it was successfully performed in the previous two
examples, which have given optically understandable
results, the for-do loops of order higher than 3 can
not be illustratively presented on the Euclidean space
through DG modeling. Formal methods have to be de-
veloped in the future, which will provide automated
generation of DGs. Moreover, the mentioned formal
methods seem to be able to exploit the experience of
the steps involved in this work. Namely,

a. the conversion of a for-do construct to a recursive
form,

b. the formation of a virtual cube for determining
the input-output signals and the function per-
formed by the PEs under construction.

This modeling for 2 and 3-order for-do loops, pro-
vide some optimism for a successful transformation
approach of higher order loops.

5 Conclusions
The method presented in this work relates to the well
known problem of designing systolic array processors
and is targeted on their implementation on FPGA and
other embedded hardware. It considers the transfor-
mation of for-do constructs in algorithms described by
computer programs (Fortran, Pascal, C, C++ and oth-
ers), onto DGs, which model graphically these pro-
grams; and it is particularly focused on the analytic
extraction of PEs.

The formulation of PEs is being performed
in an understandable, graphical way, using a2-
Dimensional matrix by vector multiplication exam-
ple and a3-Dimensional matrix by matrix multipli-
cation example. The demonstrated clarity of the PE

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     19



formulation is accompanied by the simplicity of defin-
ing its input/output signals and the processing func-
tion, which in a general case can be a complex FSM
machine.

The significance of the developed method is that
is sets the basis for the development of formal meth-
ods, in the near future, which will allow the formula-
tion of PEs for higher order (3-and more) for-do pro-
gramming constructs. Up to now these constructs can
not be demonstrated in 3 dimensions and their formu-
lation is based on complex intuitive approaches and
human imagination.

References:

[1] C. Castro-Pareja, J. Jagadeesh, S. Venugopal,
and R. Shekhar, “FPGA-based 3d median filter-
ing using word-parallel systolic arrays,” inProc.
International Symposium on Circuits and Sys-
tems, ISCAS ’04, vol. 3, May23-26 2004, pp.
157–160.

[2] A. Lopich and P. Dudek, “Architecture of
a VLSI cellular processor array for syn-
chronous/asynchronous image processing,” in
Proc. International Symposium on Circuits and
Systems, ISCAS ’06, May21-24 2006, pp. CD–
ROM.

[3] M. D. Ercegovac and J.-M. Muller, “Arithmetic
processor for solving tridiagonal systems of lin-
ear equations,” inFortieth Asilomar Conference
on Signals, Systems and Computers, 2006. AC-
SSC ’06., vol. 3, Oct.Nov.29-1 2006, pp. 337–
340.

[4] O. Nibouche, M. Nibouche, and A. Bouridane,
“High speed FPGA implementation of RSA en-
cryption algorithm,” p. 204207, Dec.14-17 2003.

[5] A. Amira, A. Bouridane, P. Milligan, and
M. Roula, “An FPGA implementation of walsh-
hadamard transforms for signal processing,”
in Proc. 2001 IEEE International Conference
on Acoustics, Speech, and Signal Processing,
(ICASSP ’01), vol. 2, May7-11 2001, pp. 1105–
1108.

[6] A. Amira and A. Bouridane, “An FPGA im-
plementation of discrete hartley transforms,” in
Proc. Seventh International Symposium on Sig-
nal Processing and Its Applications, vol. 1,
Jul.1-4 2003, pp. 625–628.

[7] A. Amira, A. Bouridane, P. Milligan, and A. Be-
latreche, “Design of efficient architectures for

discrete orthogonal transforms using bit level
systolic structures,” inProc. IEEE Computers
and Digital Techniques, vol. 149, no. 1, Jan.
2002, pp. 17–24.

[8] L. Lamport, “The parallel execution of do
loops,”Communications of the ACM, vol. 17, pp.
83–93, Feb. 1974.

[9] R. Karp, R. Miller, and S. Winograd, “The orga-
nization of computations for uniform recurrence
equations,”J. ACM, vol. 14, no. 3, pp. 563–590,
Jul. 1967.

[10] P. Quinton, “Automatic synthesis of systolic ar-
rays from uniform recurrent equations,” inProc.
IEEE of 11th Annual Symposium on Computer
Architecture, 1984, pp. 208–214.

[11] S. Rao, “Regular iterative algorithms and their
implementations on processor arrays,” Ph.D.
dissertation, Stanford University, Information
Systems Laboratory, 1985.

[12] S.-Y. Kung,VLSI Arrays Processors. Engle-
wood Cliffs, NJ 07632: Prentice Hall, 1987.

[13] H. Kung and C. Leiserson, “Systolic arrays for
VLSI,” in Sparse Matrix Proceedings, Philadel-
phia, PA: Society of Industrial and Applied
Mathematicians, 1978, pp. 245–282.

6th WSEAS Int. Conf. on CIRCUITS, SYSTEMS, ELECTRONICS, CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007     20


