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Abstract: - Defect depth estimation from passive thermography data based on neural network paradigm is 
proposed. Three parameters have been found to be related with depth of the defect. Therefore, these parameters: 
the maximum temperature over the defective area (Tmax), the temperature on the non-defective or sound area 
(Tso), and the average temperature (Tavg) of the inspected area have been used as input parameters to train 
multilayer perceptron neural networks. For verification of the proposed scheme, NN has been tested with 
trained and untrained data. The correct depth estimation is 100% for trained data and more than 98% for 
untrained data. The result shows a great potential of the proposed method for defect depth estimation by means 
of passive thermography. 
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1 Introduction 
Infrared thermography (IRT) is a technique ‘to 
see the unseen’. It uses the distribution of 
surface temperatures to assess the structure or 
behavior of what is under the surface [1].  

IRT has gained its popularity in the last few 
decades since it is non-contact, large area of 
inspection, easy data interpretation, and free 
from dangerous radiation. One disadvantage 
maybe from this technology is that the 
expensive cost of a thermal detector compare to, 
for instance, another thermal reading device like 
a thermocouple. But as the advancement of 
optoelectronic technology and imaging 
instruments, the mass production of these 
equipments tend to make the cost of them come 
into a reasonable range. 

IRT has been successfully applied to 
electrical, mechanical, petrochemical, building 
and structures, material testing, industry, 
medical, and many others various applications 
[3], from breast cancer detection [4] to SARS 
(severe acute respiratory syndrome) diagnosis 
[5], from aircraft inspection [11] to heritage 
buildings application. 

There are two approaches when applying 
this kind of technology: (1) active and (2) 
passive thermography. In active thermography, 

an external or internal source of heating energy 
is needed to assess the internal integrity of 
inspected object. But in passive thermography, 
any heating source is not needed since the 
radiated energy of the inspected object is high 
enough since then the temperature gradient 
between defective and non-defective area is so 
obvious and can be read by a thermal camera. 

One of active research by employing IRT 
technology is in detecting the defect and 
estimating the depth of that defect. Inspection of 
graphite-epoxy composites and CFRP (carbon 
fiber reinforced polymer) by means of active 
thermography is one of popular application. 
Maldague [1-2] shows some applications of 
these materials inspection. Defect detection is 
commonly has the purpose to assess the 
condition of the surface of the inspected object. 
Quantitative thermography uses this data for 
defect sizing. In defect depth estimation, the 
target is the subsurface defect and this is 
important to assess the internal condition of the 
materials. Both defect detection and depth 
estimation are usually combined to make a 
comprehensive analysis of the inspected object 
quantitatively. 

For depth estimation, few researches have 
been conducted. Neural network technique is a 
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common application for this purpose. Saintey 
and Almond [6], used finite difference modeling 
to generate input training data for neural 
network interpreter to determine defect size and 
depth. Darabi [7], did a similar approach in 
which he used three dimensional heat transfer 
models to generate synthetic data to train neural 
network depth estimator by means of active 
thermography. All existing depth estimation 
based on NN [6-11] make use active 
thermography. This paper uses simulated data 
generated by a finite element method as the 
input parameters to train NN for defect depth 
estimation in a passive thermography scheme. 
 
 
2 Numerical Modeling 
Numerical modeling is a precious tool in IRT, 
especially since it can provide limits to the 
effectiveness of the thermal nondestructive 
testing (TNDT) technique and also the 
possibility of considering different defect 
geometries and determining their detectability 
without the expense of making and testing the 
corresponding specimens [1-2]. Another 
advantage of this kind of study is to generate the 
synthetic data for other uses in IRT as have been 
used in defect depth estimation in the previous 
researches [6-11]. 

This paper employs a finite element 
modeling (FEM) to study the temperature 
behavior of a high temperature wall and to 
derive the parameters related with depth of the 
defect. 

It has been found in the previous work [12] 
through heat transfer modeling using FEM that 
there is a strong interdependence between the 
defect depth and maximum temperature 
behavior in thermal images of a furnace wall. 

The model [12] to study other related 
parameters as shown in Fig. 1. consists of a 
multiple layers wall of a furnace made of 
firebrick (L = 22 cm, k = 1.436 W/m.K,       
Cp = 0.96 J/kg.K, ρ = 2300 kg/m3), insulation 
wall (L = 11 cm,  k = 0.225 W/m.K, Cp = 1.3 
J/kg.K, ρ = 1200 kg/m3), ceramic fiber block   
(L = 6 cm, k = 0.116 W/m.K, Cp = 2.8 J/kg.K,   
ρ = 430 kg/m3), and AISI 316 stainless steel    
(L = 0.5 cm, k = 16.3 W/m.K, Cp = 499.99 
J/kg.K, ρ = 8000 kg/m3). Where L = wall 

thickness, k = thermal conductivity, Cp = 
specific heat, and ρ = density. Firebrick is the 
hot-face wall and steel is the cold-face (outer 
surface) wall. Analysis concentrates only on 
area of 100 cm × 50 cm (Fig. 2).  

    

 
 

 
 

Fig.1 Typical four layers furnace wall 
 

 
 

 
 

Fig.2 Area of analysis: front view (top), back 
          view (bottom) 
   

For passive thermography study, it is 
assumed that the temperature has been at its 
steady-state condition, in our case, the hot-face 
wall temperature assumed constant at 1000oC, 
with ambient temperature to be at 25oC. 
Adiabatic boundary conditions are applied to the 
four sides of the wall. Losses due to convective                 
(h = 10 W/m2.K) and radiative (ε = 1) heat 
transfer occur from the outer surface (cold-face) 
wall. Spalling defect is simulated as a void with 
size of 15 cm2 within hot-face wall (Fig. 2). 
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After simulating the model, the following 
results are obtained. Fig. 3 shows the 
relationship between defect depth and maximum 
temperature Tmax (measured at the center) outer 
wall. It is clear that the deep defect reflects 
higher temperature distribution on steel wall 
over defective area.  

As the temperature increases due to the 
defect depth, the average temperature Tavg for 
the outer wall will also increase as shown in Fig. 
4. The same situation is also observed for the 
temperature on the sound (non-defective) area 
Tso. Fig. 5 shows temperature values on a user 
selected node and its variation with defect depth. 
 
 
3 Depth Estimator 
Artificial neural network is a simple abstraction 
of biological neurons. Networks of these 
artificial neurons do not have a fraction of the 
power of the human brain, but they can be 
trained to perform useful functions [13]. 

In this paper, a multilayer perceptron (MLP) 
was trained to have the capability in the 
estimation of defect depth which may occur 
within the furnace refractory. 

As already shown in the previous section, 
the maximum temperature over the defect area 
(Tmax), the temperature on the sound area (Tso), 
and the average temperature (Tavg) for the whole 
wall are indeed related to the defect depth. 
Therefore, these three parameters are employed 
in the NN training for depth estimation. These 
parameters are extracted from the numerical 
modeling as discussed in the previous section. 
For the training purpose, the following defect 
depths are used: 38.5, 37.5, 36.5, 35.5, 34.5, 
33.5, 32.5, 31.5, 30.5, 29.5, 28.5, 27.5, 26.5, 
25.5, 24.5 cm. It is worthy to note that defect 
depth in our case is measured from the outer 
face (steel) wall. 

The artificial neural network shown in Fig. 6 
was found to ‘train’ efficiently on the supplied 
data. The input data for ANN training are Tmax, 
Tso, and Tavg and the corresponding values of 
defect depth were used as the outputs.  
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Fig.3 Relationship between maximum  
         temperature Tmax with defect depth 
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Fig.4 Relationship between average temperature  
         Tavg with defect depth 
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Fig.5 Relationship between temperature on 
         sound area Tso with defect depth 
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Fig.6 ANN architecture for depth estimation 
 

Fig. 7 shows the defect depth estimation by 
neural network for the trained data as compared 
to the actual depth. It is clear that the entire 
trained depth can be estimated correctly by NN. 

Fig. 8 shows the depth estimation for 
untrained data (of depth 39, 38, 37, 36, 35, 34, 
33, 32, 31, 30, 29, 28, 27, 26, and 25 cm 
respectively from the outer surface wall). Error 
depth estimation for this untrained data is shown 
in Table 1. From the table, the depth estimation 
error is less than 1% except for 25cm depth 
(1.6% error). This result indicates that the NN 
has achieved its generalization condition even 
for the unknown data. 
 
 
4 Conclusions 
It has been shown from the result in the previous 
section that the depth estimation by using neural 
network paradigm both for trained and untrained 
data is quite satisfactory.  

Neural network paradigm with its ability to 
learn and adapt to a new pattern has a great 
potential for the estimation of the defect depth. 
This paper has demonstrated on how to employ 
NN paradigm for depth estimation in a passive 
thermography scheme. 
 
 
 
 
 
 
 
 
 
 

24

26

28

30

32

34

36

38

40

D
ep

th
 fr

om
 th

e 
ou

te
r w

al
l (

cm
)

Actual vs. estimated depth for trained data

 

 
actual
estimated

 Observed depths 

 
Fig.7 Estimated depth for trained data 
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Fig.8 Estimated depth for untrained data 
 
 
Table 1 Error for depth estimation with 
             untrained data 
 

Error Actual 
Depth 

Estimated 
Depth Magnitude Percentage 

39 
38 
37 
36 
35 
34 
33 
32 
31 
30 
29 
28 
27 
26 
25 

38.9 
38.0 
37.0 
35.9 
34.9 
34.0 
33.1 
32.3 
31.1 
29.9 
29.0 
27.8 
26.9 
26.0 
25.4 

0.1 
0.0 
0.0 
0.1 
0.1 
0.0 
0.1 
0.3 
0.1 
0.1 
0.0 
0.2 
0.1 
0.0 
0.4 

0.26 
0.00 
0.00 
0.28 
0.29 
0.00 
0.30 
0.94 
0.32 
0.33 
0.00 
0.71 
0.37 
0.00 
1.60 
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