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Abstract: - This study presents the design process and performance analysis of Linear Quadratic Gaussian (LQG) 
controller, which is intended to operate within a hybrid production planning and control structure in a manufacturing 
process. The hybrid structure proposed provides the integration between the production planning and control activities 
performed at different levels in the plant. A brief description of this structure is given, but the article is primarily 
dedicated to the design and performance aspects of the LQG controller. The controller is based on a dynamic, discrete-
time and a stochastic model, aggregating products and production processes, hence making the use of LQG control 
technique suitable. Implementation of the resulting control law is performed through the use of the Separation 
Theorem, which involves the design of a Kalman estimator and a linear quadratic controller, separately. Preliminary 
simulation results show that the resulting LQG controller is well-suited for production planning and control studies at 
systems engineering level, within the proposed hybrid structure, and is capable of regulating production under 
considerable noise or uncertainty reasonably successfully. 
 
Key-Words: Systems engineering, Manufacturing processes, Hybrid control, Linear quadratic Guassian control, 
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1   Introduction 
The concept of production planning and control, and its 
dependence on the technology and the organizational 
forms were studied by many researchers in the past [1], 
[2], [3], [4], and [5]. The most common finding of these 
studies is that the new technologies yield higher 
productivity, provided that they are implemented 
through appropriate organizational forms [1] and [2].  
This aspect is particularly emphasized in [2] where the 
contribution of new technologies without sound 
management systems was found to be limited; the 
conclusions reported were based on an empirical study 
where four major factors of automation technology were 
evaluated for fifteen machinery firms. Hence, a system 
engineering point of view of production planning and 
control appears to be more beneficial, compared to 
purely technological or purely managerial approaches. 

The present study is a typical example for the use of 
systems engineering techniques in handling production 
planning and control problems in a manufacturing 
process. 
The application of control systems engineering 
techniques to manufacturing systems can be traced to 
[6], [7], and [8], all of which fall within the body of 
classical control theory. Classical control theory has its 
limitations when it comes to dealing with multi-input 
multi-output systems, time-varying systems, or non-
linear systems. These were partially overcome with the 
application of modern control theory to the analysis and 
design of production-inventory systems, broadening the 
scope of applications [9], [10], and [11]. The model 
developed in this study has been borrowed from control 
systems engineering area, and was adopted earlier for 
production planning and control purposes [12], and [13]. 
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Later, Yurtseven modified and extended the model to 
design a hybrid production planning and control system 
for a manufacturing process [14], and Yurtseven and 
Buchanan then proposed a similar model that could be 
used for assessing the effect of new technologies on 
production [15]. 
There has been a growing interest in the application of 
control system engineering techniques to the modelling 
and control of supply chain systems. The work reported 
by Perea, Grossmann, et al., employs some ideas from 
process control to modeling and control of supply chains 
[16]. Lin, Wong, et. al., report a controller design study 
and its use on the reduction of bullwhip for a model 
supply chain [17]. The modeling approach is based on 
the Z-transform and the controller design is achieved in 
the frequency domain. Hoberg, Bradley, et. al., applies 
linear control theory to study the effect of various 
policies on order and inventory variability which is 
considered to be the key drivers of supply chain 
performance [18].  Agaran, Buchanan, Yurtseven  
believe that the dominant dynamic characteristics of a 
complex system, such as a supply chain or a complex 
production-inventory system can be modeled and 
controlled effectively with the powerful analytical tools 
of Modern Control Theory, as opposed to the classical 
control theory [19]. They state that the advantages of 
Modern Control Theory over its classical counterpart; 
the latter is limited to the analysis of relatively simple 
systems that are linear, time-invariant, and small 
dimensioned (i.e., with small number of inputs and 
outputs). In Modern Control Theory one can handle 
large-scale systems with several inputs and outputs 
without too much difficulty. In addition, the powerful 
techniques developed for linear and time-invariant 
systems can be extended to non-linear, time-varying, and 
stochastic systems effectively. In addition, it is possible 
to filter stationary or non-stationary noise present in 
signals through high-performance filters such as Kalman 
filters, design optimal control policies, and make use of 
adaptive techniques to update model parameters and 
control policies for more effective control. 
The control-theoretic approach, like the other analytical 
tools, suffer from a major disadvantage; it is almost 
impossible to formulate complex issues such as 
organizational resistance to change, inter-functional or 
inter-organizational conflicts, team-oriented performance 
measures, customer relationship management, etc., 
adequately.  Min and Zhou suggest that the analytical 
tools alone are not sufficient to represent the realities of 
complex systems [20].  According to them, the 
traditional mathematical programming techniques can be 
used to model inter-functional integration, but realistic 
representations of such systems can be found through 
IT-based models that make use of model-based decision 
support systems (DSS). Such DSS’s have the potential of 

representing all the analytical and non-analytical aspects 
of complex systems in a more realistic manner. Hence, 
the work reported here is seen as a part of an on-going 
research where the overall objective is to develop a DSS 
for managing the manufacturing system under study. In 
other words, the model and the associated controller 
developed in this study will be a part of a DSS; it will be 
integrated with some other analytical/non-analytical 
tools within the DSS to cope with the ill-structured, 
strategic, and behavioral issues involved in the system. 
The work reported in this article will be presented in the 
following order: the principles adopted in the design of 
the overall hybrid production planning and control 
system will be summarized in the next section. 
Descriptions of the plant model, the LQG controller 
structure, the controller design procedure will follow 
this. 
 
 
2   Principals of Design  
The reader will find here only a summary of the ideas 
considered during the design of the hybrid production 
and planning control system; details can be found in 
[14]. The hybrid control structure proposed is shown in 
Fig. 1. This structure is based on a concept developed by 
Kohn, James, et.al. [21]. The plant or process under 
consideration is a workshop. The production strategies 
developed by the top management is translated into a set 
of production targets by Translator I, and then fed into 
the Production Planning unit. Typically, weekly 
production plans are prepared within this unit.  Note that 
the function of Translator I is to formulate production 
strategies set by the top management, which may be a 
mixture of quantitative and qualitative statements, into 
quantitative production targets in a specific format. 
Translator II translates these production plans into a 
specific form acceptable by the Scheduler. In turn, the 
Scheduler has the task of producing specific, typically 
daily schedules. Translator III transforms these 
schedules into specific control settings, or production 
trajectories that are used by the controller. The hybrid 
nature of the control structure provides the “glue” 
between the event-based systems and continuum systems 
in the control hierarchy. The design of the control 
hierarchy, with its coherent control objectives and 
coordination schemes, requires a formal design 
procedure. The models that are used for production 
planning, scheduling, and controlling activities will have 
to be different; they normally have an increasing size, 
complexity, and level of detail as one goes down the 
hierarchy.  Similarly, the time horizon considered by 
these models will need to decrease with decreasing level 
of hierarchy. Some discussion related to this topic can be 
found in [21] and [22].   
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Fig. 1. The proposed hybrid production planning and 
control structure 
 
 
3   The Controller Structure 
The objective of the controller is to ensure that the 
production schedules prepared by the Scheduler are 
implemented properly. The controller may also be used 
as a pre-planning tool, providing the opportunity to 
systems engineers to test the possible contributions of 
the newer technologies and/or organizational forms into 
production [14].  The controller design is based on a 
dynamic model, providing the opportunity to investigate 
the variations in production under different control 
policies, at different production stages, as time 
progresses.  The model is a discrete-time type, hence 
well suited to the discrete nature of the manufacturing 
process.  Furthermore, its stochastic nature allows the 
systems engineer to incorporate the uncertainties 
involved in the process, providing some flexibility in the 
modeling of such complex phenomena.  In order to keep 
the model at a reasonable size, products and production 
processes are aggregated. The aggregate aspect of the 
model allows the systems engineer to suppress the 
details and bring out the dominant characteristics of the 
production process, providing a systems perspective. 
 
A block diagram of the LQG controller is shown in Fig. 
2.  The input to the controller is the vector of production 
trajectories.  The controller generates the optimum 
control vector with components of u11(k), u12(k), u21(k), 
and u22(k) , in period k. The former two represent 
increased or decreased number of machines at stages 1 
and 2, respectively, and the latter two are the amount of 
overtime or under-time work exercised, at stages 1 and 
2, respectively. The plant output y(k) is the available 
measurements. Due to the difficulties and cost involved 
in the measurement process, it is assumed that only 
x21(k) and x22(k) can be measured, which are the 
inventory levels at stages 1 and 2, respectively, in period 
k.  A Kalman estimator is  employed to estimate x1e and 
x2e, which are the best estimates of x1 and x2, 

respectively. The vector r1(k) is a stochastic variable 
representing the unpredictable variations in the number 
of disabled or repaired machines during the period k. 
Similarly, The vector r2(k) is another stochastic variable, 
representing the unpredictable variations in demand to 
the products in period k. 
 

 
 
Fig. 2. A block diagram of the LQG controller. 
 
The objective of the controller is to regulate the plant 
around the nominal operating conditions. The linear 
model equations that represent small deviations from the 
nominal operating conditions are given by [13]: 
The transition of the number of machines in two 
successive periods is given by: 
 
x1(k+1)  = x1(k) + u1(k) + r1(k) ,           
k = 0, 1, 2,……., N-1       (1) 
where the variables are as defined above. 
The corresponding vectors are defined in the forms of: 
 
x1 (k) =  (x11(k),……………, x1j(k))´      
u1(k)  =  (u11(k),……………, u1j(k))´  
r1 (k)  = (r11(k),…………….., r1j(k))´  
 
where x1j(k), u1j(k) and r1j(k) represent these quantities at 
the jth production stage in period k = 0, 1, 2,…., N-1.  
Note that the symbol ´ indicates a matrix transposition 
operation. 
The inventory level at the beginning of period k is given 
by: 
 
x2(k+1) = x2(k) + p(k) – r2(k),        
k  =  0, 1, 2,….., N-1                                (2)     
where the variables are as defined earlier.  The vectors 
have the forms of: 
 
x2(k) = (x21(k),………………, x2i(k))´  
p(k)  =  (p1(k),…………………, pi(k))´ 
r2(k)  =  (r21(k),………………., r2i(k))´    
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x2i(k), pi(k) and r2i(k) represent these quantities at the ith 
production stage in period k  = 0, 1, 2,…., N-1. 
 
The relation between the production time and the 
amount of products can be described by a linear 
approximation as 
 
 t  p(k)  =  bp(k)                    (3) 
where bp(k) is the production time in period k with bp(k) 
= (bp1(k),…., bpj(k))´ , bpj(k) representing this quantity at 
production stage j;  t is the machining matrix with t =  
(tij) with a dimension of jxi; tji  represents the time 
required to produce one unit of product   
 
i (= 1,2,…  .,I) at stage j (= 1, 2,….., J). 
 
The amount of products can then be written as: 
 
p(k)  = ( t+) bp(k)       (4)  
where (t+) is the pseudo inverse of t.  t is a square matrix 
when the number of products is equal to the number of 
production stages, and its inversion is easy.  However, in 
some cases this is not a square matrix and its inverse has 
to be calculated through a special algorithm [13].  
The production time in period k is calculated as follows: 
 
bp(k) = rp  x1(k)  +  u2(k),    
k = 0, 1, 2,…., N-1                 (5) 
where u2(k) is the vector of overtime or under-time with 
u2(k) = (u21(k),…., u2j(k))´, u2j(k) representing this 
quantity at production stage j. rp represents the regular 
working time matrix with rp = Diagonal (rpj), with a 
dimension of jxj,  rpj  being the regular working time at 
stage j  = 1, 2,…., J.                                         
                                                            
Substituting equations (4) and (5) into (2) yields 
 
x2(k+1)  = x2(k) + (  t+ ) rp x1(k) + ( t+) u2(k)  –  r2(k),     
k =  0, 1, 2,…, N-1                     (6)   
 
The vector-matrix form of equations (1) and (6) can be 
written as: 
x(k+1) = a x(k) + b u(k) + c r(k),         
 k = 0, 1, 2,…, N-1.    (7) 
where 
 
x(k) =  u(k) =  r(k) =  

 
a =  b =  c =  

 
 

                                                                                               
4   The design procedure  
The mathematics of the LQG control is well known, 
hence they will not be repeated here. Instead, the design 
approach adopted, and the criteria used in the selection 
of the critical design parameters will be explained, 
followed by a discussion on how simulation experiments 
were performed, and the results obtained. The reader will 
find the full information related to LQG control design 
in [23], [24], and [25]. The system vector-matrix 
equations and data that are used during the simulation 
studies for various purposes are given in the Appendix. 
All design and simulation studies were performed using 
Matlab.  
The solution to the stochastic optimal control problem at 
hand is found through the well-known Separation 
Theorem or Certainty Equivalence Principle.  According 
to this theorem, first an optimum estimator estimates the 
states of the model, ignoring the optimum control 
problem, and optimum control is then computed treating 
the estimated states as deterministic quantities. A two 
product-two stage case is considered in this study, with 
the following data: 
 
t =  rp =  

 
Here, t represents the machining time matrix, and rp 
represents the regular working time matrix. The reader 
should note that rp is a diagonal matrix, whereas t is an 
off-diagonal matrix, as expected. The plant state-space 
and measurement equations are put into the following 
standard form to be able to perform the design: 

 
x (k+1) = A x(k) + B u(k) + G w(k)           (8) 
y(k)  =  C x(k)  + D u(k) + H w(k) + v(k)    (9) 
 
where w(k) and v(k) are the random processes associated 
with process noise and measurement noise, respectively. 
A, B, G, C, and D are the corresponding system 
matrices, as given in the Appendix. C was chosen so that 
only the 3rd and 4th state variables are available for 
measurement. The reader should note that the 
uncontrolled plant is  unstable.  
Firstly, the (deterministic) LQ controller was designed, 
ignoring the noise processes. This was achieved through 
the use of Matlab’s dlqr command. The optimal control 
law is then computed to minimize the loss function Jc, 
where Jc =        ( x´Qc x + u´ Rc u ). Qc and Rc represent 
the weighting matrices for the state and control vectors, 
respectively. Several combinations of Qc and Rc were 
simulated in order to tune the controller’s performance. 
First, the steady-state optimal control law was calculated 
through the command dlqr. The Kalman estimator was 
designed through Matlab’s KALMAN command. The 
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execution of this command requires the formulation of a 
quadratic loss function, similar to the one given above. 
This loss function contains Qn and Rn, which are the 
process noise and measurement noise covariance 
matrices, respectively. Once again, their values were 
chosen after some tedious tuning studies. A steady-state 
Kalman estimator was designed, as opposed to a time-
varying one, since it satisfies the requirements of the 
regulator under consideration. The reader should also 
note that the stochastic variables r1(k), given in equation 
(1), and r2(k), given in equation (2), are included into the 
expression  Gw(k).  
  
 
4   Conclusion 
The design and performance analysis of a LQG 
controller for a complex manufacturing system was 
presented. The controller is intended to operate in a 
hybrid production planning and control structure where 
three translators serve as the ‘glue’ between various 
subsystems of the production planning, scheduling and 
control activities in the structure. In this article, a brief 
description of the proposed hybrid control structure was 
given, and the design procedure and performance 
analysis of the LQG controller was presented, fully. It 
was shown how products and production stages can be 
aggregated to construct a dynamic, discrete-time, and a 
stochastic model, and how a LQG controller can be 
designed. Preliminary simulation studies conducted 
show that the resulting controller is able to regulate the 
plant under considerable noise or uncertainty reasonably 
successfully. Furthermore, more research needs to be 
conducted in the direction of designing the remaining 
components of the hybrid production planning and 
control system, and test system’s performance under 
realistic operating conditions. 

 

APPENDIX 

The plant state-space and measurement equations that 
are used for the design of LQG controller are: 
 
x(k+1) = A x(k) + B u(k) + G w(k)              (A1) 
y(k)  = C x(k) + D u(k) + H w(k) + v(k)  (A2)                                                      
                                                    
where x(k) and u(k) are as defined in the main text. w(k) 
and v(k) are the process noise and measurement noise, 
respectively, with the following properties: 
E{w}= E{v}= 0; E{ww´}= Qn;  E{vv´}= Rn; E{wv´}= 0; 
E is the expected value operator; Qn is the process noise 
covariance matrix; Rn is the measurement noise 
covariance matrix.  

 
The system matrices are:             
 
A=  B=  C=  

 
D is a 2x4 zero matrix, G is a 4x4 identity matrix, H is a 
2x4 zero matrix, with 
 
t =  rp =  
 
While designing the Kalman estimator, several values of 
Qn and Rn were simulated. Their numerical values were 
tuned to: 
 

Qn =  ,Rn is  an 2x2 identity matrix 

 
Similarly, while designing the linear quadratic control, 
the weighting matrices of the objective function were 
fixed to the following values after some tuning studies:  
Qc is a 4x4 identity matrix, where its diagonal elements 
represent the weighting of the state variables. Rc is a 4x4 
diagonal matrix with diagonal elements equal to 0.1 
which represent the weighting of the control variables. 
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