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Abstract: Disease mapping is a method used to display the geographical distribution of disease occurrence. Re-
cently, this method has received much attention from many researchers including epidemiologists, biostatisticians
and medical demographers. Some traditional methods of classification for detection of high or low risk area such
as traditional percentiles method and significant method have been used in disease mapping for map construction.
However, as described by several authors, the classifications based on these traditional methods have some disad-
vantages for describing the spatial distribution of the risk of the disease concerned. To overcome these limitations,
an approach using mixture model within an empirical Bayes framework is described in this paper. The aim of
this study is to investigate the geographical distribution of infant mortality in Peninsular Malaysia from the year
1991 to 2000 using space-time mixture model. The analysis showed that in the early year of 1990’s the spatial
heterogeneity effect was more prominent; however, towards the end of 1990’s this pattern tends to disappear. In-
directly, this may indicate that the provisions of health services throughout the Peninsular Malaysia are uniformly
distributed over the period of the study, particularly towards the year 2000.

Key–Words:Disease mapping, Space-time mixture model, Infant mortality, Geographical distribution, Spatial het-
erogeneity, Pattern

1 Introduction

Child health is a central issue amongst the public in
many developing countries. Infant mortality rate is
one of the most common measure used to describe
the level of services relating to health, socio-economic
and education of a country. Since independence in
1957, Malaysia had experienced a very remarkable
decline in infant mortality from the rate of around 100
per thousand to around 13 per thousand by the late
1980’s. It was reported that this rate has been reduced
to 9 per thousand in 2004. This achievement is nearly
equal to the rate experienced by developing countries
such as United States and Britain, with 7 and 6 death
per thousand respectively. The decline in infant mor-
tality rate in Malaysia could possibly be due to the
prosperous socio-economic situation where the aver-
age incomes have increased over the years. Moreover,
the basic facilities such as water supply, electricity,
sewage, sanitation and health services have been im-
proved provided to the wider population of the coun-
try. Apart from that, the levels of education and health
consciousness have increased among Malaysians and
other factors that directly and indirectly influence the

infant mortality in Malaysia such as ethnicity, mother’
education, preceding birth interval, birth place, etc [1].

The basic concept of mapping is to group the in-
formation in the data for all regions in the study area
into several components or exclusive groups, where
individual region in the same component has a sim-
ilar risk. One way of displaying the variability of
disease or mortality rate is by a widely used tech-
nique called disease mapping. It is very useful to pro-
duce such maps especially for government agencies
in resource allocation or identifying hazards that con-
tribute to the disease [2]. Usually, in the context of
health sector, the authority in charged aims to identify
whether the risks for a particular disease concerned
are uniformly distributed or homogeneous for differ-
ent regions of the country. For example, as mentioned
earlier, it is fortunate that the infant mortality rate in
Malaysia have improved over the last few decades,
but the issue concerned is whether the improvement
is uniformly distributed throughout the country. Does
every district experience the same level of improve-
ment or reduction of the risks? Does the improvement
only occur in certain areas while the other areas still
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remain in the high risk areas category? If there is a
huge gap between the high risk areas and the low risk
areas, the disease risks can be divided to several cat-
egories or considered as heterogeneous. This is the
main issue that will be addressed in this paper in the
context of disease mapping context of infant mortality
in Malaysia.

In disease mapping, let us divide the study area
to be mapped intoM mutually exclusive districts
(i = 1, 2, ...,M) . Each district has its own observed
number of cases,Oi and expected number of cases,
Ei. The expected number of cases is calculated as;

Ei = Ni

∑
oi/

∑
Ni (1)

whereNi is the population for areai [3]. Here the
standardization is done on the total population at risk.
The standardization can be done on other factors such
as age, gender, etc and this method have been dis-
cussing by several authors [4, 5].

It is common to assume that the observe number
of cases,Oi, follows a Poisson distribution with ex-
pectationEiθ and the probability density function is
defined as:

Pr(Oi = oi) =
exp(−θEi)(θEi)Oi

oi!
= f(oi, θ, Ei) (2)

whereθ is the relative risk of disease concern over
the study area. UsingOi andEi as obtained based
on the data, we can have one of the most common
indexes to estimate the relative risk for regioni, θi i.e
Standardized Mortality Ratio (SMR) defined as:

θ̂i = SMRi =
Oi

Ei
(3)

In map construction, the important elements are
obtaining smoothed estimators of relative risk and cat-
egorizing or classification of all districts into several
components using shading or colouring to differenti-
ate the level of risks for each component. Although,
SMR has been used commonly as an index to mea-
sure relative risk; however, it has some weaknesses
where the variance ofSMR, θi/Ei depends onEi.
The variance will be large when the expected value is
small, as contributed by the small population size and
the variance will be small when the expected value is
large due to the large population size. If the observed
value is zero such as in the case of rare disease, the
SMR and the standard deviation will be zero. An-
other limitation ofSMR is the instability of the rel-
ative risk estimation due to the presence of extreme
SMR when rare diseases are investigated in small
population areas [6].

To overcome the drawbacks of theSMR a
Bayesian approach had been used which allow for the
risk to vary between the different districts as given by
the assumption:

Oi ∼ Poisson(Eiθi) (4)

and the probability density function is define as:

Pr(Oi = oi) =
exp(−θiEi)(θiEi)Oi

oi!
= f(oi, θi, Ei) (5)

For example, the empirical Bayes of the rela-
tive risks where a random effects (or mixture) model
that assumes a parametric probability density func-
tion (pdf), denoted asf(θ) for the distribution of rel-
ative risks between districts were adopted [7]. This
modeling approach has been used in many fields in-
cluding disease data by applying several empirical
Bayes methods of estimation to smooth theSMR
[8, 9, 10]. Some authors have provided discussion
on hierarchical Bayesian approach with structured and
unstructured spatial random effects [11]. Although
the Bayesian methods can provide estimate on rela-
tive risks for each district, the number of optimum
classification for categorizing the districts cannot be
obtained based on them. The most common approach
that is widely used by many researchers for catego-
rizing areas in disease mapping is classification based
on quartiles. However, this method is rather arbitrary
and has no guarantee in detecting the classification of
high or low risk areas. Another disadvantage of the
Bayesian relative risks estimation is the usage of as-
sumption in Eq. (4) will give the number of param-
eters and the number of districts is the same. If the
numbers of districts are large, there might be difficul-
ties in estimating parameters consistently because of
too many parameters to be estimated. As an alterna-
tive approach, a method have been suggested to over-
come these drawbacks which include the time fac-
tor and consider spatial heterogeneity effect will be
discussed in this paper known as space-time mixture
model within non-parametric approach for map con-
struction. This method has appeared to be very attrac-
tive approach for practical applications and become a
more flexible tool [12]. Infant mortality data in Penin-
sular Malaysia from 1991 to 2000 will be applied us-
ing this approach to examine the geographical distri-
bution of the disease concern.

2 Methodology
Space-time mixture model is an extension model of
mixture model by including the time factor in order
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to study the disease pattern in certain period of time.
This model gives a valuable indication of an emerg-
ing pattern over time because it looks simultaneously
for all space-time components [6]. The basic idea of
space-time mixture model approach in the context of
disease mapping is to consider all space-time data as
a single data set. The same steps of modeling the
mixture model will be applied in estimating parame-
ters, so in this paper, the discussion on mixture model
will be presented in application to space-time data. In
mixture model, we assume that the population comes
from several heterogeneous components where every
component consists of different risk levels of disease.
This assumption will give a more heterogeneous case.
Assume that the mixture model consists of c com-
ponents and each component has a disease risk,θj

j = (1, ..., c). Let pj denotes the proportion of re-
gional areas havingθj risk. This discrete parameter
distributionP for describing the level of risk can be
given as:

P =

[
θ1, ..., θc

p1, ..., pc

]
(6)

Accordingly, we may assume that observed data in
district i of a particular yeart, oit comes from a non-
parametric mixture density identified in the following
form:

f(oit, P, Eit) =
T∑

t=1

c∑

j=1

Pjf(oit, θj , Eit) (7)

wherep1 + ... + pc = 1, pj ≥ 0, j = 1, ..., c and
t = 1, ..., T . Eit is the expected number of cases in
districti of a particular yeart. The numbers of param-
eters to be estimated in the model withc components
considered above are2c − 1 which consists ofc un-
known relative risksθ1, ..., θc andc−1 unknown mix-
ing weightsp1, ..., pc−1 wheref(.) denotes the Pois-
son density taken from previous assumption [13].

One of the basic issue in mixture model is
whether the number of componentsc, is unknown or
assumed to be known [14]. They called the two cases
as flexible support size and fixed support size respec-
tively. However, in both cases, the maximum likeli-
hood approach can be applied for the parameter es-
timation. In the estimation based on flexible support
size, a grid containingθj ’s is defined and the corre-
spondingpj that maximized the likelihood function is
determined. However, in this paper, the fixed support
size is considered and outline of the algorithms used
for this estimation is the EM algorithm [15].

In EM algorithm, the first step of mixture model
involves estimatingθj andpj in each component by
giving their initial values. These initial values and the
number of component to be estimated can be obtained

from the histogram of relative risks orSMR where
the height of the bars maybe used as the estimate for
proportion corresponding to relative risks while the
number of bars maybe used as the number of compo-
nents. We are interested to determine the membership
of each district to which particular component. Let
us denote the full data as(oit, Eit, xi1t, xi2t, ..., xict)
wherexijt indicate the membership of districti in the
jth component for the yeart. For example, if region
i in the yeart belongs to the third component, can be
written asxit = (0, 0, 1, 0, ..., 0)T . Based on the in-
formation of the initial weights,̂pj and relative risks,
θ̂j obtained, we can execute the EM algorithm which
consist of E-step and M-step. The E-step consists of
the calculation of the probability of each district be-
longing to jth component while the M-step consists
of the calculation of the weights and relative risks.
These two steps will be repeated alternately until the
convergence criterion is met and can be summarized
as below:

E-step:

w
(r)
ijt = Pr (Xijt = 1|oit, P,Eit)

=
p̂
(r)
j f

(
oit, θ

(r)
j , Eit

)

c∑
j=1

p̂
(r)
j f

(
oit, θ

(r)
j , Eit

) (8)

M-step:

p̂
(r+1)
j =

M∑
i=1

w
(r)
ijt

M
(9)

and

θ
(r+1)
j =

M∑
i=1

w
(r)
ijt

oit
Eit

M∑
i=1

w
(r)
ijt

(10)

When the convergence is obtained, the next step is
to compute the non-parametric maximum likelihood
estimator (NPMLE) that maximizes the log-likelihood
function which is defined as:

lc =
T∑

t=1

M∑

i=1

log f(oit, P, Eit)

=
T∑

t=1

M∑

i=1

log





c∑

j=1

pjf(oit, P, Eit)



 (11)

Further step is to determine the most suitable
number of components by computing the difference
between the log-likelihood forc components andc+1
components, which is known as Likelihood Ratio
Statistics (LRS) and is defined as:

LRS = −2(lc − lc+1) = −2 log θ (12)
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The purpose of calculating theLRS is to test this
hypothesis:

Ho : number of components isc
Ha : number of components isc + 1

A problem arises in determining the number of
components when the solution consists of the log-
likelihood values that are nearly the same for ev-
ery component. Conventionally, theLRS test has
an asymptotic chi-square distribution with degrees of
freedom equal to the difference between the number
of parameters under the alternative and null hypoth-
esis. However, this conventional results forLRS do
not hold for mixture and a method proposed to obtain
the critical values in determining the number of com-
ponents is via a simulation technique for example by
parametric bootstrap [14].

Once the optimum number of components is ob-
tained, the final step in mixture model approach is
to classify the membership of each district to which
component. Classification can be obtained by ap-
plying Bayes’ theorem which involves computing the
probability of each district belonging to each compo-
nent with the posterior probability given by:

Pr (Xijt = 1) =
p̂jf(oit, θj , Eit)

c∑
j=1

p̂jf(oit, θj , Eit)
(13)

for i = 1, ..., M, j = 1, ..., c and t = 1, ..., T .
Theith district in the yeart will belong to the compo-
nent or subpopulationj if the posterior probability of
this belonging is highest.

3 Result

Data analysis based on space-time mixture model is il-
lustrated using the infant mortality data in Peninsular
Malaysia from the year 1991 to 2000. Comparisons
of the results obtained by this method throughout the
study period become easier as all maps for each partic-
ular year have the same categorization. Table 1 shows
the result on how to determine the optimum num-
ber of components based on log-likelihood,lc men-
tioned above. From this table, the models with four
and five components have the lowest log-likelihood
value, which is the same. Since there is no improve-
ment in log-likelihood value for space-time mixture
model with five components and by considering the
parsimony factor, we choose a model with four com-
ponents as the best model to fit the space-time data
used in this study. Although it has been suggested
by some studies that bootstrap method should be ap-
plied in deciding either to choose betweenc or c + 1
components, we based our decision on the previous

argument. From the fitted model with four compo-
nents, the first category had the lowest risk with mean
of 0.726 and weight of 0.324 and the highest risk
category with mean of 2.199 and weight of 0.014.
The analysis of the space-time infant mortality data
in Peninsular Malaysia over the last decade leads to
the mixture density with four components given by:

f
(
oit, P̂ , Jit

)
= f(oit, 0.726, Jit)× 0.324

+ f(oit, 1.131, Jit)× 0.550
+ f(oit, 1.630, Jit)× 0.112
+ f(oit, 2.199, Jit)× 0.014 (14)

Table 1: Result of space-time mixture model for infant
mortality data in Peninsular Malaysia from 1991 to
2000.
Number of Mean Weight log- LRS
components relative (̂pj) likelihood

(c) risks (lc)
(θ̂j)

c = 5 0.726 0.324 -
1.131 0.550 2625.094
1.630 0.112 0.000
2.199 0.012
2.199 0.002

c = 4 0.726 0.324
-

2625.094
1.131 0.550
1.630 0.112 72.420
2.199 0.014

c = 3 0.749 0.370 -
2661.304

1.175 0.547 330.504
1.810 0.083

c = 2 0.834 0.564 -
2826.556

1.374 0.436 1515.370

c = 1 1.070 1.000 -
3584.241

Corresponding to the results given in the table, we
can summarize the geographical distribution of infant
mortality throughout the study period as given in Fig-
ures 1, 2 and 3 by providing the space-time maps for
the year 1991, 1996 and 2000, respectively. As each
map obtained throughout the study period have the
same classification, the comparison and fluctuation of
the disease concern over time is easier to compare and
interpret. In the early year of 1990’s, it can be seen
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that only about 6% of the districts fall in lowest risk ar-
eas, however in the middle and late 1990’s, the infant
mortality had improves with almost 50% or more of
the districts were in this category. These figures also
shown that none of the districts were in the highest
risk category in the year 1996 and 2000 but four dis-
tricts were in this category in 1991. These changes in-
dicate that infant mortality in Peninsular Malaysia had
improved over the last decade and tends to be more
homogeneous towards the end of the study period.

 
p=0.324, RR=0.726 

p=0.550, RR=1.131 

p=0.112, RR=1.630 

p=0.014, RR=2.199 

    

                           1991 

 

 

Figure 1: Infant mortality maps in Peninsular
Malaysia based on space-time mixture model for the
year 1991

4 Discussion

For quite some time, many researchers have con-
ducted various studies in disease mapping using the
traditional methods of classification such as per-
centiles method and significant method. However,
these methods have some deficiencies and potential of
misrepresenting the graphical distribution and ques-
tion regarding whether these classifications give a cor-
rect interpretation may be raised [14]. An alternative
approach suggested is the mixture model that could

 
p=0.324, RR=0.726 

p=0.550, RR=1.131 

p=0.112, RR=1.630 

p=0.014, RR=2.199 

   

1996 

                                 

 

Figure 2: Infant mortality maps in Peninsular
Malaysia based on space-time mixture model for the
year 1996

produce a smoother map where the random variabil-
ity has been extracted from the data. Other main ad-
vantages of using the mixture distribution are its dis-
creteness making the map construction is straightfor-
ward and provides the optimum number of compo-
nents. The inclusion of space-time factor in mixture
model satisfactorily produces maps that easier to in-
terpret compare by looking the maps separately since
every map for each year throughout the study period
have the same classification.

Based on the three maps in Figure 1–3, it is very
clear that the space-time mixture model has removes
random variability from the map and provides a better
and clearer picture of classification for high and low
risk areas. For the period of 10 years i.e from 1991-
2000, we can conclude that the classifications tend to
be more homogeneous implying that the random vari-
ability has reduced with time. Furthermore, towards
the end of the study period, maps obtained shown that
more districts have fallen into the low risk categories
which indicate that the infant mortality in Peninsular
Malaysia have improved within the last decade.

There are many factors that contribute to the re-
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Figure 3: Infant mortality maps in Peninsular
Malaysia based on space-time mixture model for the
year 2000

duction of infant mortality. Some literatures stated
that infant mortality is more likely to be related to the
socio-economic level, health behavior, quality of an-
tenatal care, support during delivery, postnatal care,
nutritional status, education level, unemployment and
birth intervals [16, 17, 18]. These factors were ad-
dressed in the case of Malaysia as shown by the in-
creased in health of RM17.30 per capita in 1970 to
RM248 per capita in the year 2000 [19]. The number
of hospitals was increased from 84 public hospitals in
1965 to 116 public hospitals in 2002 along with many
private hospitals, health clinics and rural clinics being
built throughout the country to provide better health
system in Malaysia [20]. As the number of hospitals
increased, more facilities were upgraded such as pro-
viding more hospital beds while at the same time the
number of registered doctors, trained nurses and mid-
wives have also been increased [20]. In general, the
health and medical services in Malaysia have signifi-
cantly improved in the past four decades since inde-
pendence contributing to the improvement in infant
mortality rates. The government has put in a lot of
effort especially in terms of the quality of service,
the advancement of medicine and medical technolo-

gies, the resolution of the issue of unbalanced distri-
butions of medical resources between rural and urban
areas, the establishment of collaborations among gov-
ernment and private hospitals or medical institutions
and etc. A lot of campaigns and programmes have
been done by the local government and the Ministry of
Health to educate and increase the health conscious-
ness among Malaysians.

In conclusion, as discussed before, even though
the space-time mixture model have some advantages
in estimating the disease risks and provide a better and
clearer picture of categorization, this approach still
has a weakness in which the relative risk for differ-
ent districts could possibly be correlated, i.e depen-
dent on geographical proximity. An example of model
that can be used which includes the neighboring factor
among the areas is the parametric conditional autore-
gressive model [4].
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