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Abstract.  Data collection and analysis in web mining faces certain unique challenges. Due to a 
variety of reasons inherent in web browsing and web logging, the likelihood of bad or incomplete 
data is higher than conventional applications. The analytical techniques in web mining need to  
accommodate such data. Fuzzy and rough sets provide the ability to deal with incomplete and 
approximate information. Fuzzy set theory has been shown to be useful in three important aspects 
of web and data mining, namely clustering, association, and sequential analysis. There is 
increasing interest in research on clustering based on rough set theory. Clustering is an important 
part of web mining that involves finding natural groupings of web resources or web users. 
Researchers have pointed out some important differences between clustering in conventional 
applications and clustering in web mining. For example, the clusters and associations in web 
mining do not necessarily have crisp boundaries. As a result, researchers have studied the 
possibility of using fuzzy sets in web mining clustering applications. Recent attempts have used 
genetic algorithms based on rough set theory for clustering. However, the genetic algorithms 
based clustering may not be able to handle the large amount of data typical in a web mining 
application. This paper proposes a variation of the K-means clustering algorithm based on 
properties of rough sets  topology. 
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1. Introduction 

 
Web mining can be viewed as the extraction 
of structure from an unlabeled, semi-
structured data set containing the 
characteristics of users and information 
(Joshi and Krishnapuram, 1998). Logs of 
web access available on most servers are 

good examples of the data set used in web 
mining. Three important   operations in web 
mining are clustering, association, and 
sequential analysis. This paper focuses on 
clustering, which is a process of identifying 
natural groupings of objects.  
 
 The clustering process is an important step 
in establishing user profiles. User profiling 
on the web consists of studying important 
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characteristics of the web visitors. Due to 
the ease of movement from one portal to 
another, web users can be very mobile. If a 
particular web site doesn’t satisfy the needs 
of the user in a relatively short period of 
time, the user will  quickly move on to 
another web site. Therefore, it is very 
important to understand the needs and 
characteristics of web users. 
 
 Clustering faces several additional 
challenges in web mining, compared to 
traditional applications (Joshi and 
Krishnapuram, 1998). The clusters tend to 
have vague or imprecise  boundaries. The 
membership of an object in a cluster may 
not be precisely defined. There is a 
likelihood that an object may be a candidate 
for more than one cluster. In addition, due to 
noise in the recording of data and 
incomplete logs, the possibility of the 
presence of outliers in the data set is quite 
high. Joshi and Krishnapuram (1998) argued 
that the clustering operation in web mining 
involves modeling an unknown number of 
overlapping sets. They proposed the use of 
fuzzy clustering (Hathaway and Bezdek, 
1993; Krishnapuram et al., 1995;  
Krishnapruam and Keller, 1993) for 
grouping the web users. This paper proposes 
neighborhood rough set clustering using a 
modified K-means algorithm.  Any 
classification scheme can be represented as a 
partition of a given set of objects.  Objects in 
each equivalence class of the partition are 
assumed to be identical or similar. In web 
mining, it is not possible to provide an exact 
representation of each class in the partition 
(Joshi and Krishnapuram, 1998). Rough sets 
(Pawlak, 1982, 1984, 1992) enable us to 
represent such classes using upper and lower 
bounds. There are increasing number of 
research efforts on clustering in relation to 
rough set theory (Peters et al., 2002; 
doPrado et al., 2002; Hirano and Tsumoto, 
2000). Lingras (2001) described how a 
rough set theoretic classification scheme can 
be represented using a rough set genome. 
The resulting genetic algorithms (GAs) were 
used to evolve groupings of highway 
sections represented as interval  or rough 
sets. Lingras (2002) applied the 
unsupervised rough set clustering based on 
Gas to group web users. The preliminary 
experimentation by Lingras (2002) 
illustrated the feasibility of rough set 

clustering for developing user profiles on the 
web. However, the clustering process based 
on GAs seemed computationally expensive 
for scaling to a larger data set. One of the 
most popular and efficient clustering 
algorithms in conventional applications is K-
means clustering (Hartigan, 1979; 
MacQueen, 1967). In the K-means approach, 
randomly selected objects are used as the 
centroids of clusters. The objects are then 
assigned to different clusters based on their 
distance from the centroid. The newly 
formed clusters are then used to determine 
new centroids. The process continues until 
the clusters  Stabilize Lingras and Huang 
(2002) provided a theoretical and 
experimental analysis of various clustering 
techniques for two datasets of different 
sizes. They clearly illustrated the 
computational advantages of the K-means 
approach for large datasets. However, it is 
necessary to adapt the K-means algorithm 
for creating intervals of clusters based on 
rough set theory. In studies based on 
marketing data, K-means clustering has been  
considered in the context of rough sets and 
genetic algorithms (Voges et al., 2002a, 
2002b). However, these studies do not use 
unsupervised learning to create interval sets. 
A modification of the K-means   algorithm 
to create interval of clusters will provide an 
efficient method for representing clusters 
with vague and imprecise boundaries.  
 
2. Mathematical Review  
  
2.1 Rough set Topology  
 
T is the topology on x 

T= { A C X : either A= Ф or X-A} is 
countable 
 

Let X denote the universe , and let   X R X 
be an equivalence   relation on X. The pair 
(T,x) is called an approximation space or 
topological space. The equivalence relation   
R partitions the set X into disjoint subsets. 
Such a partition of the universe is denoted 
by  

A= UAi          AiєT 
Lower bound of (A(X) = Ф (null) 
Upper bound  of  A(X)  =X ( space it self) 
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Upper and lower bound belong to T 
 
                If two elements A,B.  belong to T  
 
     and   A ∩ B = Ф   then A ∩ B  belong to 
T.  
 
  A∩ B ≠ Ф then also A∩ B  belong to T 
  
 
 2.2 Review of K-means approach 
 
K-means clustering is one of the most 
popular statistical clustering techniques 
(Hartigan, 1979; MacQueen, 1967). The 
name K-means originates from the means of 
the k clusters that are created from n objects. 
Let us assume that the objects are 
represented by m-dimensional vectors. The   
objective is to assign these n objects to k 
clusters. Each of the clusters is  also 
represented by an m-dimensional vector, 
which is the centroid or mean vector for that 
cluster. The process begins by randomly 
choosing k objects as the centroids of the k 
clusters. The objects are assigned to one of 
the k clusters based on the minimum value 
of the distance d(v, x) between the object 
vector v = (v1, . . . , vj, . . . , vm) and the 
cluster vector 
 
x = (x1, . . . , x j , . . . , xm). The distance d(v, 
x) is given by: 
                                   

 d(v, x) =    √ ( ∑m  (vj-xj)2 ) /M 
                                                               i=1                                           (1)    
                                                                 
 
After the assignment of all the objects to 
various clusters, the new centroid vectors of 
the clusters are calculated as: 

              ∑v є.x vj 

x j = -----------------------       ------  (2) 
                    Size of cluster x 
 
, where 1 <= j< = m.  
The process stops when the centroids of 
clusters stabilize, i.e. the centroid vectors 
from the previous iteration are identical to 
those generated in the current iteration. 

 
 
 2.3 Adaptation of K-means to 
rough set  topology 
 
 d(x,y) measure the difference or 
dissimilartoy  between the object 
(x,y). 
 
d(x,y)   =  ||x-y||   for all X 
 
d(x,y )=    0 if x=y 
   1 if x≠y 
 
d is the distance  
 
d(x,y)>=0 
 
d(x,y)=0 iff x=y 
 
d(x,y)=d(y,x) 
 
d(x,y)<=d(x,z)+d(z,y)  
 
for all x,y,z belong to X 
 
 
A cluster is a collection of data objects that 
are similar to one another with the same 
cluster and dissimilar to the objects in other 
cluster  Cluster of data object can be treated 
collectively as one group and so be 
considered as a form of data compression    
 
A data  set, to be clustered, contains N 
object with M variable may be represented 
as 
 
0 d(1,2)  d(1,3)---------d(1,m) 
d(2,1)  0 d(2,3)----------d(2,m)  
| 
| 
d(n,1)  d(n,2) d(n,3) --------- d(n,m) 
 
where d(x,y) measure the difference or 
dissimilarity  between the object (x,y). 
 
The modified centroid  calculation is give by  
 

           ∑dn(Xn,Yn) 
d(x,y) =    ------------------ -------     ----(3) 
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                             2n     
 the Eucliden distance  defined   
dn(xn,yn)= √( (x1-y1)2 +(x2-y2)2   

+ (x3-y3)2 … (xn-yn)2  
                      

                       ---(4) 

where i<=n<=m 
 
 

 
This can be verified with the following 
example in which  stabilized centroid is 
found by using the K-mean approach and by 
using  the rough set topology.  
 
 
V X d(vi,xj) 

K-mean 
approach 

Xj 
centroid 

dn(xn,yn) 
Eucliden 
distance  

d(v,y) 
set 
topology 

2 
 

8 3.162, 3.8238     10.099  0.315 
 

3 1 2.645 
1 5 3.872 
7 2 3.872 
9 4 5..568 

 
 
From the above table it is clear that the 
centroid from the set topology is more 
stable. 
 
3. Summary and conclusions 
This paper proposed an adaptation of the K-
means algorithm to develop interval clusters 
of web visitors using rough set topology . In 
order to develop interval clusters, the K-
means algorithm was modified based on the 
concept of lower and upper bounds using the 
concept of topology and find the stabilized 
centroid .   
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