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Abstract: - In the present paper, for constructing the minimum risk estimators of state of stochastic systems, a 
new technique of invariant embedding of sample statistics in a loss function is proposed. This technique 
represents a simple and computationally attractive statistical method based on the constructive use of the 
invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding 
technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the 
problem and to find the best invariant estimator, which has smaller risk than any of the well-known estimators. 
Also the problem of how to select the total number of the observations optimally when a constant cost is 
incurred for each observation taken is discussed. To illustrate the proposed technique, an example is given.  
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1   Introduction 
The state estimation of discrete-time systems in the 
presence of random disturbances and measurement 
noise is an important field in modern control theory. 
A significant research effort has been devoted to the 
problem of state estimation for stochastic systems. 
Since Kalman’s noteworthy paper [1], the problem 
of state estimation in linear and nonlinear systems 
has been treated extensively and various aspects of 
the problem have been analyzed [2-8]. 
 The problem of determining an optimal estimator 
of the state of stochastic system in the absence of 
complete information about the distributions of 
random disturbances and measurement noise is seen 
to be a standard problem of statistical estimation. 
Unfortunately, the classical theory of statistical 
estimation has little to offer in general type of 
situation of loss function. The bulk of the classical 
theory has been developed about the assumption of a 
quadratic, or at least symmetric and analytically 
simple loss structure. In some cases this assumption 
is made explicit, although in most it is implicit in the 
search for estimating procedures that have the “nice” 
statistical properties of unbiasedness and minimum 
variance. Such procedures are usually satisfactory if 
the estimators so generated are to be used solely for 

the purpose of reporting information to another party 
for an unknown purpose, when the loss structure is 
not easily discernible, or when the number of 
observations is large enough to support Normal 
approximations and asymptotic results. 
Unfortunately, we seldom are fortunate enough to be 
in asymptotic situations. Small sample sizes are 
generally the rule when estimation of system states 
and the small sample properties of estimators do not 
appear to have been thoroughly investigated. 
Therefore, the above procedures of the state 
estimation have long been recognized as deficient, 
however, when the purpose of estimation is the 
making of a specific decision (or sequence of 
decisions) on the basis of a limited amount of 
information in a situation where the losses are clearly 
asymmetric – as they are here. 
 There exists a class of control systems where 
observations are not available at every time due to 
either physical impossibility and/or the costs 
involved in taking a measurement. For such systems 
it is realistic to derive the optimal policy of state 
estimation with some constraints imposed on the 
observation scheme. 
 It is assumed in this paper that there is a constant 
cost associated with each observation taken. The 
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optimal estimation policy is obtained for a discrete-
time deterministic plant observed through noise. It is 
shown that there is an optimal number of 
observations to be taken. 
 The outline of the paper is as follows. A 
formulation of the problem is given in Section 2. 
Section 3 is devoted to characterization of 
estimators. A comparison of estimators is discussed 
in Section 4.  A general analysis is presented in 
Section 5. An example is given in Section 6.  
 
 
2   Problem Statement 
To make the above introduction more precise, 
consider the discrete-time system, which in 
particular is described by vector difference equations 
of the following form: 
 

),()()(),1()1( kkkkkk uBxAx ++=+    (1) 
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where x(k+1) is an n vector representing the state of 
the system at the (k+1)th time instant with initial 
condition x(1); z(k) is an m vector (the observed 
signal) which can be termed a measurement of the 
system at the kth instant; H(k) is an m × n matrix; 
A(k+1,k) is a transition matrix of dimension n × n, 
and B(k) is an n × p matrix, u(k) is a p vector, the 
control vector of the system; w(k) is a random vector 
of dimension m (the measurement noise). By 
repeated use of (1) we find 
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where the discrete-time system transition matrix 
satisfies the matrix difference equation, 
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From these properties, it immediately follows that 
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 The problem to be considered is the estimation of 
the state of the above discrete-time system. This 
problem may be stated as follows. Given the 
observed sequence, z(1), …, z(k), it is required to 
obtain an estimator d of x(l) based on all available 
observed data Zk={z(1), …, z(k)} such that the 
expected losses (risk function) 
 

{ }),(E),( dd θθ θ rR =  (9) 
 
is minimized, where r(θ,d) is a specified loss 
function at decision point d≡d(Zk), θ=(x(l),ω), ω is 
an unknown parametric vector of  the probability 
distribution of w(k), k≤l.  
 If it is assumed that a constant cost c > 0 is 
associated with each observation taken, the criterion 
function for the case of k observations is taken to be  
 

   .),(),( ckrrk += dd θθ  (10) 

 
In this case, the optimization problem is to find 
 

 { }),(E min min d
d

θθ kk
r , (11) 

 
where the inner minimization operation is with 
respect to d≡d(Zk), when the k observations have 
been taken, and where the outer minimization 
operation is with respect to k. 
 
 
3   Characterization of Estimators 
For any statistical decision problem, an estimator (a 
decision rule) d1 is said to be equivalent to an 
estimator (a decision rule) d2 if R(θ,d1)=R(θ,d2) for 
all θ∈Θ, where R(.) is a risk function, Θ is a 
parameter space,. An estimator d1 is said to be 
uniformly better than an estimator d2 if R(θ,d1) < 
R(θ,d2) for all θ∈Θ. An estimator d1 is said to be as 
good as an estimator d2 if R(θ,d1) ≤ R(θ,d2) for all 
θ∈Θ. However, it is also possible that we may have 
“d1 and d2 are incomparable”, that is, R(θ,d1) < 
R(θ,d2) for at least one θ∈Θ, and R(θ,d1) > R(θ,d2) 
for at least one θ∈Θ. Therefore, this ordering gives a 
partial ordering of the set of estimators. 
 An estimator d is said to be uniformly non-
dominated if there is no estimator uniformly better 
than d. The conditions that an estimator must satisfy 
in order that it might be uniformly non-dominated 
are given by the following theorem. 
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 Theorem 1 (Uniformly non-dominated estimator). 
Let (ξτ; τ=1,2, ... ) be a sequence of the prior 
distributions on the parameter space Θ. Suppose that 
(dτ;τ=1,2, ...) and (Q(ξτ,dτ); τ=1,2, ... ) are the 
sequences of Bayes estimators and prior risks, 
respectively. If there exists an estimator d∗ such that 
its risk function R(θ,d∗), θ∈Θ, satisfies the 
relationship 
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where 
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then d∗ is an uniformly non-dominated estimator. 
 Proof.   Suppose d∗ is uniformly dominated. Then 
there exists an estimator d∗∗ such that R(θ,d∗∗) < 
R(θ,d∗) for all θ∈Θ. Let 
 

  [ ] 0. > ),(  ),( inf = ∗∗∗

∈
− dd θθ

Θθ
RRε   (14) 

 
Then 
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Simultaneously, 
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τ=1,2, ...,  and  
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On the other hand, 
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and 
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This contradiction proves that d∗ is an uniformly 
non-dominated estimator.   � 

4   Comparison of Estimators 
In order to judge which estimator might be preferred 
for a given situation, a comparison based on some 
“closeness to the true value” criteria should be made. 
The following approach is commonly used [9-10]. 
Consider two estimators, say, d1 and d2 having risk 
function R(θ,d1) and R(θ,d2), respectively. Then the 
relative efficiency of d1 relative to d2 is given by 
 

   { } .),(),( = ;,.rel.eff 1221 dddd θθθ RRR  (20) 
 
 When { } 1;,.rel.eff 021 <θddR  for some 0θ , we 
say that d2 is more efficient than d1 at 0θ . 
If { } 1;,.rel.eff 21 ≤θddR  for all θ with a strict 
inequality for some 0θ , then d1 is inadmissible 
relative to d2. 
 
 
5   General Analysis 
5.1   Inner Minimization 
First consider the inner minimization, i.e., k is held 
fixed for the time being. Then the term ck does not 
affect the result of this minimization. Consider a 
situation of state estimation described by one of a 
family of density functions, indexed by the vector 
parameter θ=(µ,σ), where µ≡x(k) and σ≡ω(>0) are 
respectively parameters of location and scale. For 
this family, invariant under the group of positive 
linear transformations: z→az+b with a>0, we shall 
assume that there is obtainable from some 
informative experiment (a random sample of 
observations zk={z(0), …, z(k)}) a sufficient statistic 
(mk,sk) for (µ,σ) with density function pk(mk,sk;µ,σ) 
of the form 
 

 ]./ ,/)[(),;,( 2 σσµσσµ kkkkkk smfsmp −= −  (21) 
 
We are thus assuming that for the family of density 
functions an induced invariance holds under the 
group G of transformations: mk→amk+b, sk→ask (a> 
0). The family of density functions satisfying the 
above conditions is, of course, the limited one of 
normal, negative exponential, Weibull and gamma 
(with known index) density functions. 
 The loss incurred by making decision d when 
µ≡x(l) is the true parameter is given by the 
piecewise-linear loss function 
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The decision problem specified by the informative 
experiment density function (21) and the loss 
function (22) is invariant under the group G of 
transformations. Thus, the problem is to find the best 
invariant estimator of µ, 
 

   ),,R( min arg dd
d

θ
D∈

∗ =  (23) 

 
where D is a set of invariant estimators of µ, R(θ,d) 
= Eθ{r(θ,d)} is a risk function. 
 
 
5.2   Best Invariant Estimator 
It can be shown by using the invariant embedding 
technique [11-12] that an invariant loss function, 
r(θ,d), can be transformed as follows: 
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v=(v1,v2), v1= σµ /)( −km , v2= σ/ks , η=(d−mk)/sk.  
 It follows from (24) that the risk associated with d 
and θ can be expressed as 
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which is constant on orbits when an invariant 
estimator (decision rule) d is used, where fk(v1,v2) is 
defined by (21). The fact that the risk (26) is 
independent of θ means that a decision rule d, which 
minimizes (26), is uniformly best invariant. The 
following theorem gives the central result in this 
section. 
 Theorem 2 (Best invariant estimator of µ). 
Suppose that (v1,v2) is a random vector having 
density function 
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where fk is defined by (21), and let Gk be the 
distribution function of v1/v2. Then the uniformly 
best invariant linear-loss estimator of µ is given by 
 

d*= mk+η∗sk, (28) 
 
where 
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Then the minimum of Ek{ r&& (v,η)} occurs for η∗ 
being determined by setting ∂Ek{ r&& (v,η)}/∂η = 0 and 
this reduces to 
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which establishes (29).   � 
 Corollary 2.1 (Minimum risk of the best invariant 
estimator of µ). The minimum risk is given by 
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with η∗ as given by (29). 
 Proof. These results are immediate from (24) 
when use is made of ∂Ek{ r&& (v,η)}/∂η = 0.   � 
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5.3   Outer Minimization 
The results obtained above can be further extended 
to find the optimal number of observations. Now 
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is to be minimized with respect to k. It can be shown 
that this function (which is the constant risk 
corresponding to taking a sample of fixed sample 
size k and then estimating x(l) by the expression (28) 
with k for k∗) has at most two minima (if there are 
two, they are for successive values of k; moreover, 
there is only one minimum for all but a denumerable 
set of values of c). If there are two minima, at k∗ and 
k∗+1, one may randomize in any way between the 
decisions to take k∗ or k∗+1 observations. 
 
 
6   Example 
Consider the one-dimensional discrete-time system, 
which is described by scalar difference equations of 
the form (1)-(2), and the case when the measurement 
noises w(k),  k = 1, 2,  …  (see  (2))  are  
independently  and identically distributed random 
variables drawn from the exponential distribution 
with the density 
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where the parameter σ>0 is unknown. It is required 
to find the best invariant estimator of x(l) on the 
basis of the data sample zk=(z(1), …, z(k)) relative to 
the piecewise linear loss function 
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where θ=(µ,σ), µ≡x(l), c1>0, c2=1. 
 The likelihood function of zk is 
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if l < k (estimation of the past state of the system), 
and 
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if either l = k (estimation of the current state of the 
system) or l > k (prediction of the future state of the 
system). 
 It can be justified by using the factorization 
theorem that (mk,sk) is a sufficient statistic for 
θ=(µ,σ), where   
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The probability density function of (mk,sk) is given 
by 
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Since the loss function (35) is invariant under the 
group G of location and scale changes, it follows 
(see (25)) that 
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Thus, using (28) and (29), we find that the best 
invariant estimator (BIE) of µ is given by 
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The risk of this estimator is 
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Here the following theorem holds. 
 Theorem 3 (Characterization of the estimator 
dBIE). For the loss function (35), the best invariant 
estimator of µ, dBIE, given by (46) is uniformly non-
dominated. 
 Proof. The proof follows immediately from 
Theorem 1 if we use the prior distribution on the 
parameter space Θ, 
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This ends the proof.   � 
 Consider, for comparison, the following 
estimators of µ (state of the system): 
 The maximum likelihood estimator (MLE): 
 

   ;MLE kmd =  (51) 

 The minimum variance unbiased estimator 
(MVUE): 
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 The minimum mean square error estimator 
(MMSEE): 
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 The median unbiased estimator (MUE): 
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Each of the above estimators is readily seen to be of 
a member of the class 
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where η is a real number. A risk of an estimator, 
which belongs to the class C, is given by (48). If, 
say, k=3 and c1=26, then we have that 
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In this case (33) becomes 
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Now (60) is to be minimized with respect to k. It is 
easy to see that 
 

( )1(/]1)1)[(1( )1/(1
11 −−+−−=− −

− knckJJ k
kk  

 
 

) .)(/]1)1[( /1
1 cknck k +−+−  (61) 

 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          278



Define 
 

)1(/]1)1)[(1()( )1/(1
1 −−+−= − knckk kϕ  

 
 

  ).(/]1)1[( /1
1 knck k −+−  (62) 

 
 

Thus 
 

  .)( 1−<
>

<
> ⇔ kk JJkc ϕ  (63) 

 
 By plotting ϕ(k) versus k the optimal number of 
observations k∗ can be determined. 
 For each value of c, we can find an equilibrium 
point of k, i.e., c=ϕ(k•). The following two cases 
must be considered: 
 1) k• is not an integer. We have k(1)<k•<k(1)+1=k(2), 
where k(1) and k(2) are neighboring integers. Since 
ϕ(k) is monotonically decreasing, we know that 
ϕ(k(1))>c and ϕ(k(2))<c. Then, by using these 
properties, (61) becomes 
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Therefore, k(1) is the optimal number of observations. 
We conclude that the optimal number k∗ is equal to 
the largest integer below the equilibrium point. 
 2) k• is an integer. By the same sort of argument, 
we know that k• is as good as k•-1. Consequently, 
both k• and k•-1 are the optimal number of 
observations. Notice that in this case, Jk* can be 
computed directly and precisely from (60). 
 
 
7   Conclusions 
In this paper we construct the minimum risk 
estimators of state of stochastic systems. The method 
used is that of the invariant embedding of sample 
statistics in a loss function in order to form pivotal 
quantities, which make it possible to eliminate 
unknown parameters from the problem. This method 
is a special case of more general considerations 
applicable whenever the statistical problem is 
invariant under a group of transformations, which 
acts transitively on the parameter space. 
 For  a  class  of  state  estimation  problems where  

observations on system state vectors are constrained, 
i.e., when it is not feasible to make observations at 
every moment, the question of how many 
observations to take must be answered. This paper 
models such a class of problems by assigning a fixed 
cost to each observation taken. The total number of 
observations is determined as a function of the 
observation cost. 
 Extension to the case where the observation cost 
is an explicit function of the number of observations 
taken is straightforward. A different way to model 
the observation constraints should be investigated.  
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