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Abstract:A mathematical model is developed to describe the behavior of the assignment of frequencies to demands
occurring one by one and distributed randomly over a space. The behavior of this Sequential Frequency Assign-
ment Process (SFAP) is studied mainly by Monte Carlo simulations. Several conjectures concerning the long term
behavior of SFAP are formulated, e.g. a law of large numbers and a central limit theorem. Also, it is shown that at
higher frequencies the densities are higher than at lower frequencies. Finally, the relation of the SFAP with the car
parking model and particle deposition models is discussed.
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1 Introduction

Frequency Assignment is an important problem for ra-
diocommunications regulatory agencies. Customers
demand frequencies, e.g. for land-mobile radio com-
munication. On one hand, the number of frequencies
available is limited so that not every customer can be
given a unique frequency. On the other hand, when
several customers have to share a frequency, there is
the risk of interference. The frequency assignment
problem (FAP) is an optimization problem that at-
tempts to assign frequencies to customers in some op-
timal way, e.g. minimizing the number of frequencies
needed subject to restrictions regarding the interfer-
ence.

Formally, the frequency assignment problem can
be formulated as follows: given a set of available fre-
quenciesΦ = {φ1, . . . , φn} and a set of transmit-
ter locationsΞ = {ξ1, . . . , ξm}, find an assignment
A : Ξ → Φ that is optimal in some sense. The FAP
has been studied extensively in the past few years,
mainly as a result of interest from operators of GSM
systems. Numerous algorithms have been invented,
see e.g. Aardal et al. [1] and Eisenblätter [2]. These
algorithms address the batch frequency assignment
problem, where all the locations of transmitters are
fully known in advance. Operators of GSM systems
and broadcast frequency planners use them to rapidly
make a (near-) optimal frequency planning.

In this paper we introduce the sequential fre-
quency assignment algorithm. Sequential frequency
assignment is useful in situations when the locations
where the demand for a new frequency arises are not

known in advance, but arrive one at a time. This is
usually the case in a large part of the land-mobile ra-
dio frequency band. In this paper, we focus on the
case that assignments are irreversible, i.e. every com-
pleted assignment remains fixed during the entire pro-
cess. Demand for frequencies arises sequentially, the
location of thek-th customer being denoted byxk,
k = 1, 2, . . ., wherexi ∈ S ⊂ IR2. Thek-th customer
occupies a ball of radiusδ centered inxk. Within
this ball, the frequency is not available for other cus-
tomers in order to avoid radio interference. At the
time of arrival of thek-th customer, only the locations
x1, . . . , xk are known. The previous customers have
already been assigned frequencies and these will not
be changed.

The assignment of a frequency to thek-th cus-
tomer is done according to the following algorithm:

1. Check if one of the frequencies already in use by
the customersx1, . . . , xk−1 is able to accommo-
date thek-th customer.

2. If yes, assign the lowest available frequency.

3. If no, assign a new frequency to this customer.

We refer to this algorithm as the Sequential Frequency
Assignment Process (SFAP).

The assignment of a frequency and also the to-
tal number of frequencies required to accommodate
customers at locationsx1, . . . , xn depends on the or-
der of the locations. The same set of locations arriv-
ing in a different order will generally require a dif-
ferent number of frequencies. In our paper we will
study the model where the customers arrive according
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to some stochastic process(Xk)k≥1. Effectively this
corresponds to an average case analysis of our algo-
rithm.

There are at least two clear advantages to this al-
gorithm: (i) SFAP is very simple, and especially it
does not require the solution of difficult and time con-
suming optimization procedures. (ii) SFAP assigned
frequencies remain unchanged once they have been
given to a customer, regardless of later demands. At
the same time, it is obvious that SFAP does not dis-
tribute the frequencies in an optimal way. A batch
assignment will always do a better job.

2 Mathematical Formulation

We will now give a precise mathematical formulation
of the sequential frequency assignment process. In
what follows, we will assume that the sequence of
locations of customers demanding frequencies is the
outcome of a stochastic process(Xk)k≥1. Moreover
we assume that the random variablesXk, k ≥ 1, are
independent and identically distributed, taking values
in some bounded subsetS ⊂ IR2. For the mathe-
matical approach, we assume that the set of frequen-
cies is countably infinite. We may thus assume with-
out loss of generality thatΦ = N+ = {1, 2, . . .}.
We denote byΦk the frequency assigned to thek-
th customer. Clearly,Φk is determined by the loca-
tions of all the customers arriving up to timek, i.e.
we can find a functiongk : Sk → N+ such that
Φk = gk(X1, . . . , Xk). The functionsgk, k ≥ 1, are
given as follows. Consider for each integeri ≥ 1
the setAk−1(i) :=

⋃
1≤j≤k−1:Φj=i Bδ(Xj), where

Bδ(x) := {y ∈ S : ‖y − x‖ < δ} denotes the open
ball of radiusδ centered atx. ThusAk−1(i) is the
region of interference for thei-th frequency when the
first k − 1 customers have been assigned frequencies.
We say that thei-th frequency is available for thek-
th customer, ifBδ(Xk) ∩ Ak−1(i) = ∅. If one or
more of the frequenciesΦ1, . . . ,Φk−1, are available,
we assign the lowest available frequency to thek-th
customer. Otherwise, we assign a new frequency to
this customer. In this way we obtain the following
formula

Φk = min{i ≥ 1 : Bδ(Xk) ∩Ak−1(i) = ∅} (1)

Note that the processAk := (Ak(i))i≥1 defines a
Markov process whose state space consists of all
sequences(A(i))i≥1 where A(i) ⊂ S are disjoint
unions of balls of radiusδ with the additional prop-
erty that for somen we getA(i) 6= ∅ for all i ≤ n and
A(i) = ∅ for all i > n.
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Figure 1: Assignment of frequencies to customers
demanding frequencies at the following locations:
1, 5, 7, 3, 4, 2, 5, 7, 6.

Example: For illustration, we consider a one-
dimensional example, whereS = [0, 8] andδ = 1,
i.e. locations of customers have to be two units apart
in order to avoid interference. Assume that the first9
customers arrive in the following order

1, 5, 7, 3, 4, 2, 5, 7, 6

Then we get the following assignment of frequencies

Φ1 = 1 Φ2 = 1 Φ3 = 1
Φ4 = 1 Φ5 = 2 Φ6 = 2
Φ7 = 3 Φ8 = 2 Φ9 = 4

see Figure 4 for a graphical representation of this as-
signment.

In what follows, we will often consider the
location-frequency pair process(Xk,Φk), k ≥ 1.
Note that the pair process is no longer an i.i.d. pro-
cess, asΦk = gk(X1, . . . , Xk).

We are interested in the number of frequencies re-
quired to accommodate a given list of customers. If
the firstn demands for frequencies arrive from the lo-
cationsX1, . . . , Xn, the number of different frequen-
cies assigned is

Fn = max
1≤k≤n

Φk = fn(X1, . . . , Xn) (2)

wherefn : Sn → N+ is a function that is implicitly
defined via the above considerations. We moreover
introduce the doubly indexed process(Fm,n)n∈N,m≤n

Fm,n = fn−m(Xm+1, . . . , Xn) (3)

Fm,n denotes the number of frequencies that would
be required to accommodate only customersm +
1, . . . , n, forgetting about the earlier customers. With
this notation, we haveFn = F0,n.

Remark: Sequential frequency assignment has
some very counterintuitive properties. Two of these
properties are the lack of monotonicity and the lack of
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Figure 2: Assignment of frequencies to customers
demanding frequencies at the following locations:
3, 4, 2, 5, 7, 6.
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Figure 3: Assignment of frequencies to customers
demanding frequencies at the following locations:
4, 2, 5, 7, 6.

subadditivity. Consider the customers in the previous
example, and restrict attention to the last6 customers,
i.e. the ones with locations3, 4, 2, 5, 7, 6. These cus-
tomers, arriving in this given order, require two fre-
quencies. (see Figure 2) However, if we take away the
first of these customers, and only consider the cus-
tomers with the remaining locations4, 2, 5, 7, 6, we
suddenly need three frequencies! (see Figure 3)

The same sequence of customers also provides an
example showing thatFm,n is not a subadditive pro-
cess, i.e. that the assumption

Fl,n ≤ Fl,m +Fm,n, ∀l, m, n ∈ N+, l ≤ m ≤ n (4)

is generally violated. In our example, we haveF0,9 =
4, F0,3 = 1, F3,9 = 2. Moreover, it is possible
to find an order of locations so that the removal of
one customer results in an arbitrarily large decrease of
number of necessary frequencies. (see Figure 4) The
reader is invited to check that by extending this exam-
ple, it is always possible to construct a tower that de-
creases in height of ordern, when only one customer
is left away.

3 Conjectures and Simulations

3.1 Law of large numbers
We are in the first place interested in the asymptotic
growth ofFn, the number of frequencies required to
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Figure 4: Possible configuration of 11 customers that
arrived in such an order that if the first customer had
not shown up, only 4 frequencies were necessary in-
stead of 7.

accommodate the firstn customers. Simulations sup-
port the following

Conjecture 1 There exists a constantγ, depending
onS, onδ and on the distribution of the locationsXk

such that

lim
n→∞

1
n

Fn = γ (5)

In the long run, sequential frequency assignment re-
quires on averageγ frequencies per customer.
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Figure 5: Simulation results suggest that
limn→∞ 1

nFn converges. In this figure we show
the development ofγn := 1

nFn/2δ, with 2δ = 0.01
in the rangen ∈ [103, 105]. Here, as in all our
simulations we useS = [0, 1]. In this particular case
we findγ105/2δ ≈ 1.31.

In the special case whenS = [0, 1], and theXk

are uniformly distributed over[0, 1], we can study the
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scaling behavior ofγ = γ(δ) asδ → 0. For δ ¿ 1,
we can accommodate(2δ)−1 customers per frequency
in the case of an ideal packing, i.e. each customer re-
quires2δ frequency and thus it makes sense to com-
pareγ(δ) to this standard. We conjecture that there
existsα ∈ (0, 1) such that

lim
δ→0

γ(δ)
2δ

= α−1 (6)

Both conjectures are supported by extensive simula-
tions, see Figure 5 for an example of 1000 simulations
of 1

nFn/2δ for δ = 0.01.
At this point we do not have a mathematical proof

of the law of large numbers. We believe that a proof
based on Derriennic’s [3] ergodic theorem for almost
subadditive processes should be feasible. Though the
SFAP is not subadditive, deviations from subadditiv-
ity occur very rarely. This conjecture is supported by
simulations.

3.2 Central Limit Theorem
Conjecture 2 There exists a constantσ2 > 0 such
that asn →∞

Fn − nγ√
n

−→ N(0, σ2) (7)

in distribution, whereN(0, σ2) denotes the normal
distribution with mean zero and varianceσ2.

This conjecture is also well supported by simulations
(see Figure 6).

3.3 The Active Range of Frequencies
The highest frequency in use at timen is Fn. Simu-
lations show that the active range of frequencies, i.e.
those frequencies that are in use and still have open
space for new customers, does not converge but is of
ordern

1
2 . In Figure 7 we picture some simulation re-

sults of the (square of the) active range as a function
of the number of customers in the system.

4 Packing Density
As the number of customers increases, the frequencies
become saturated one by one, i.e. fork large enough
we have

Ak(i) ∩Bδ(x) 6= ∅
for all x ∈ S. In other words, this frequency has no
room for additional customers. We can thus define for
each frequency the limit sets

A(i) :=
⋃

k≥1

Ak(i)
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Figure 6: Histograms with results of 100,000 Monte
Carlo simulations ofF0,100, F0,1000 andF0,10000 with
2δ = 0.1. The Normal probability density function
with mean and variance estimated from the data is de-
picted in the figure.
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Figure 7: The active range of frequencies is of order√
n. In the figure the square of the active range is

plotted in the case2δ = 0.1, 2δ = 0.05 and2δ =
0.01, based on 1000 simulations.

and investigate their structure. An interesting quantity
is the packing density|A(i)|/|S|.

In the special case whenS = [0, 1] and when
δ ¿ 1, the packing density is related to the famous
Renyi parking constant. In Renyi’s car parking prob-
lem, first described by Renyi [4], cars of length2δ
are sequentially parked in the interval[0, 1]. The mid-
points of the cars are uniformly distributed over[0, 1].
Cars are not allowed to overlap. If there is no space
for a certain car, the car is rejected. This process is
stopped when there is no space left for a new car.
Renyi showed that the coverage of cars in the park-
ing space converges asδ → 0 to a constantc1. Renyi
obtained an analytic formula forc1 and showed that
c1 ≈ 0.7475.

The process of assigning frequencies to cus-
tomers can be regarded as a multilayer extension of
the car parking process. In the car parking prob-
lem there is only one parking space (frequency), and
cars (customers) are simply rejected when there is no
space. In the SFAP model higher indexed frequen-
cies are tested until some space is found. The first
frequency is thus identical to the Renyi car parking
problem. Indeed, in simulations of one-dimensional
SFAP with small area customers (δ ¿ 1), we find that
the packing density equals Renyi’s parking constant.

Surprisingly, our simulations show that the pack-
ing density in the higher indexed frequencies is differ-
ent fromc1 and is in fact an increasing function of the
index, see Figure 8. The origin of this phenomenon
is not completely understood yet. Similar phenomena
have been observed in random sequential adsorption

in physical chemistry (see [5], for a review).
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Figure 8: The packing density is an increasing func-
tion of the frequency index.

5 Conclusion

In this article we introduced a stochastic model for the
one by one assignment of frequencies to customers.
We investigated some of its properties and received
interesting results. It is shown by counterexamples
that the assignment process is not subadditive. But
simulations results suggest that the mean number of
needed frequencies converges to a constant value. The
number of needed frequencies also tends to be nor-
mal distributed when a large number of customers is
involved. Furthermore, we found that the number of
active frequencies is of ordern

1
2 when there aren cus-

tomers in the system. Finally, we found that our model
is in fact a multilayer extension of the well known car
parking model. Some random sequential adsorption
models used in physical chemistry are also related to
the SFAP. Like in some of these models we find in-
creasing densities for higher frequencies.
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