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Abstract: In the present paper, Kantorovich type of Bernstein polynomials based on q-integers is constructed. Ap-
proximation properties and rate of convergence of these operators are established with the help of the Korovkin
theorem.
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1 Introduction
For each positive integer n, Philips [7] defined q-
Bernstein polynomials as;

Bn(f ; q, x) =
n∑
k=0

f

(
[k]
[n]

)[
n
k

]
xk

n−k−1∏
s=0

(1−qsx).

(1)
When q = 1, Bn(f ; q, x) is the classical Bernstein
polynomial

Bn(f, x) =
n∑
k=0

f

(
k

n

)(
n
k

)
xk(1− x)n−k. (2)

Kantorovich [6] modified the Bernstein operators
and defined the lineer positive operators Kn :
L1([0, 1]) → C([0, 1]) defined for any f ∈ L1([0, 1])
by;

Kn(f ;x) = (n+1)
n∑
k=0

pn,k(x)
∫ (k+1)/(n+1)

k/n+1
f(u)du,

(3)

pn,k(x) =
(
n
k

)
xk(1− x)n−k.

These operators are known as Kantorovich operators
in literature.

Now we recall the following definitions about q-
calculus [5] .

Let q > 0. For each nonnegative integer r, the

q-integer [r], q-factorial [r]! and q-binomial
[
n
r

]
,

(n ≥ r ≥ 0) are defined by

[r] := [r]q :=

{
1−qr

1−q q 6= 1,
r q = 1,

[r]! :=
{

[r][r − 1]...[1] ; q ≥ 1,
1 ; q = 1,

and [
n
r

]
:=

[n]!
[n− r]![r]!

,

respectively.
The q-analog of the integration in the interval

[0, b] is defined by [1]∫ b

0
f(t)dqt = (1− q)b

∞∑
j=0

f(qjb)qj 0 < q < 1.

(4)
Note that

lim
q→1

∫ b

0
f(x)dqx =

∫ b

0
f(x)dx,

provided that f(x) is continuous in the interval [0, b].
In this paper, we will establish the q-analogue of

the Bernstein-Kantorovich operators and we will ex-
amine the approximation properties of the constructed
operator.

2 Approximation Properties
In this section we define the Kantorovich type q-
Bernstein polynomial as;

B∗n(f ; q, x) = [n+ 1]
n∑
k=0

q−k
[
n
k

]
xk

×
n−k−1∏
s=0

(1− qsx)
∫ [k+1]/[n+1]

[k]/[n+1]
f(t)dqt.

(5)
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We will discuss the approximation properties of
the operator (5) when we replace q in (5) by a se-
quence (qn) in the interval (0, 1) such that

lim
n→∞

qn = 1 and lim
n→∞

1
[n]

= 0 (6)

are satisfied.

Theorem 1 If the sequence (qn) satisfies the condi-
tions (6) in the interval (0, 1) then the operator (5)
satisfy

‖B∗n(f ; q)− f‖ → 0 (7)

for every f ∈ C[0, a], 0 < a < 1.

Proof: Let us compute B∗n(t
s; q, x) for s = 0, 1, 2.

We start with s = 0.

B∗n(1; q, x) = [n+ 1]
n∑
k=0

q−k
[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

×
∫ [k+1]/[n+1]

[k]/[n+1]
dqt. (8)

From the definition of q-integral we can write;∫ [k+1]/[n+1]

[k]/[n+1]
dqt =

∫ [k+1]/[n+1]

0
dqt−

∫ [k]/[n+1]

0
dqt

= (1− q) [k + 1]
[n+ 1]

∞∑
j=0

qj

− (1− q) [k]
[n+ 1]

∞∑
j=0

qj

=
1− q

[n+ 1]
([k + 1]− [k])

∞∑
j=0

qj

=
qk

[n+ 1]

where we have used the properties

[k + 1]− [k] = qk,
∞∑
j=0

qj =
1

1− q
, for 0 < q < 1.

Therefore it is easily seen from (8) that

B∗n(1; q, x) = 1. (9)

Now we will estimate B∗n(t
s; q, x) for s = 1. From

(5) we can write,

B∗n(t; q, x) = [n+ 1]
n∑
k=0

q−k
[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

×
∫ [k+1]/[n+1]

[k]/[n+1]
tdqt (10)

Let us examine the q-integral on the right hand side of
the equality.∫ [k+1]/[n+1]

[k]/[n+1]
tdqt =

∫ [k+1]/[n+1]

0
tdqt−

∫ [k]/[n+1]

0
tdqt

= (1− q) [k + 1]
[n+ 1]

∞∑
j=0

q2j
[k + 1]
[n+ 1]

− (1− q) [k]
[n+ 1]

∞∑
j=0

q2j
[k]

[n+ 1]

= (1− q) [k + 1]2

[n+ 1]2
1

1− q2

− (1− q) [k]2

[n+ 1]2
1

1− q2

=
1

1 + q

1
[n+ 1]2

([k + 1]2 − [k]2)

=
qk

1 + q

1
[n+ 1]2

([k](1 + q) + 1)

(11)

Substituting (11) into (10) we get;

B∗n(t; q, x) = [n+ 1]
n∑
k=0

[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

×
{

1
1 + q

1
[n+ 1]2

([k](1 + q) + 1)
}

= [n+ 1]
n∑
k=1

[
n
k

]
xk

[k]
[n+ 1]2

×
n−k−1∏
s=0

(1− qsx)

+ [n+ 1]
n∑
k=0

[
n
k

]
xk

×
n−k−1∏
s=0

(1− qsx) 1
1 + q

1
[n+ 1]2

=
1

[n+ 1]

n∑
k=1

[n]!
[n− k]![k − 1]!

xk

×
n−k−1∏
s=0

(1− qsx) +
1

1 + q

1
[n+ 1]

.

Consequently we have,

B∗n(t; q, x) =
[n]

[n+ 1]
x+

1
1 + q

1
[n+ 1]

(12)

Lastly we will examine B∗n(t
s; q, x) for s = 2. We
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have

B∗n(t
2; q, x) = [n+ 1]

n∑
k=0

q−k
[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

×
∫ [k+1]/[n+1]

[k]/[n+1]
t2dqt (13)

Making similar computations as in the previous cases
for the q-integral, one can find

∫ [k+1]/[n+1]

[k]/[n+1]
t2dqt =

∫ [k+1]/[n+1]

0
t2dqt

−
∫ [k]/[n+1]

0
t2dqt

=
1

[n+ 1]3
× 1

1 + q + q2

×
{
qk([k + 1]2 + [k][k + 1] + [k]2)

}
(14)

Substituting (14) into (13) and using the property

[k + 1] = q[k] + 1 (15)

we can write,

B∗n(t
2; q, x) =

1
[n+ 1]2

× 1
1 + q + q2

×

{
n∑
k=0

[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

× (q[k] + 1)2

+
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

× (q2[k − 1] + q + 1)

+
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

× (q[k − 1] + 1)
}
.

Writing the terms explicitly, the right hand side of the

equality becomes,

=
1

[n+ 1]2
1

1 + q + q2

×

{
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)q2[k]

+ 2
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)q

+
n∑
k=0

[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

+
n∑
k=2

[n]!
[n− k]![k − 2]!

xk
n−k−1∏
s=0

(1− qsx)q2

+
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)q

+
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

+
n∑
k=2

[n]!
[n− k]![k − 2]!

xk
n−k−1∏
s=0

(1− qsx)q

+
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

}

Using the property given in (15) once more and then
rearranging the terms yields;

=
1

[n+ 1]2
1

1 + q + q2

×

{
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

× q2(q[k − 1] + 1)

+ 2q
n∑
k=1

[n]!
[n− k]![k − 1]!

xk
n−k−1∏
s=0

(1− qsx)

+ 1 + [n][n− 1]x2
n−2∑
k=0

[
n− 2
k

]
xk

×
n−k−3∏
s=0

(1− qsx)q2

+ [n]x
n−1∑
k=0

[
n− 1
k

]
xk

n−k−2∏
s=0

(1− qsx)q

+ [n]x
n−1∑
k=0

[
n− 1
k

]
xk

n−k−2∏
s=0

(1− qsx)
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+ [n][n− 1]x2
n−2∑
k=0

[
n− 2
k

]
xk

n−k−3∏
s=0

(1− qsx)q

+ x
n−1∑
k=0

[
n− 1
k

]
xk

n−k−2∏
s=0

(1− qsx)

}
.

Making the necessary computations we finally get,

B∗n(t
2; q, x) =

1
[n+ 1]2

× 1
1 + q + q2

×
{
[n][n− 1]x2q3 + [n]xq2 + 2q[n]x

+ 1 + [n][n− 1]x2q2 + [n]xq + [n]x

+ [n][n− 1]x2q + [n]x
}
.

More clearly,we have,

B∗n(t
2; q, x) =

[n][n− 1]
[n+ 1]2

q3 + q2 + q

1 + q + q2
x2

+
[n]

[n+ 1]2
q2 + 3q + 2
1 + q + q2

x

+
1

[n+ 1]2
1

1 + q + q2
. (16)

Consequently replacing q by a sequence (qn) such that
lim
n→∞

qn = 1 and taking the property (6) into account,
from (9), (12) and (16) we can write,

B∗n(1; qn, x) ⇒ 1

B∗n(t; qn, x) ⇒ x

B∗n(t
2; qn, x) ⇒ x2,

respectively. Therefore the conditions of the Ko-
rovkin’s theorem are satisfied and the proof of the the-
orem is completed.
Remark 1: For the special case q = 1 we have;

B∗n(1;x) = 1

B∗n(t;x) =
n

n+ 1
x+

1
2(n+ 1)

B∗n(t
2;x) =

n(n− 1)
(n+ 1)2

x2 +
2n

(n+ 1)2
x+

1
3(n+ 1)2

Remark 2: The first and the second moment of
the operator B∗n(f ; q, x) are

B∗n((s− x); q, x) =
(

[n]
[n+ 1]

− 1
)
x+

1
[n+ 1]

1
1 + q

and

B∗n((s− x)2; q, x) =
[n][n− 1]
[n+ 1]2

{
q3 + q2 + q

q2 + q + 1

}
x2

+
[n]

[n+ 1]2

{
q2 + 3q + 2
q2 + q + 1

}
x

+
1

[n+ 1]2
q

q2 + q + 1

+ x2 − 2
[n]

[n+ 1]
x2 − 2

1
1 + q

1
[n+ 1]

x,

respectively.

3 Order of Approximation

In this section, we compute the approximation order
of the operator B∗n(f ; q, x) by means of modulus of
continuity.

Let f ∈ C[0, a]. The modulus of continuity of f ,
w(f, δ), is defined by

w(f ; δ) = sup
|x−y|≤δ
x,y∈[0,a]

|f(x)− f(y)| (17)

It is well-known that, for a function f ∈ C[0, a]
we have

lim
δ→0+

w(f ; δ) = 0 (18)

and

|f(x)− f(y)| ≤ w(f ; δ)
(
|x− y|
δ

+ 1
)
. (19)

for any δ > 0.
The following theorem gives the rate of conver-

gence of the sequence B∗n(f ; q, x) by means of mod-
ulus of continuity.

Theorem 2 If the sequence q := (qn) satisfies the
conditions given in (6), then

‖B∗n(f ; q)− f‖ ≤ 2w(f,
√
δn) (20)

for all f ∈ C[0, a],where

δn = B∗n((s− x)2; q;x). (21)

Proof: Let f ∈ C[0, a]. From the linearity and mono-
tonicity of B∗n(f ; q, x) we can write,

|B∗n(f ; q, x)− f(x)|
≤ B∗n(|f(t)− f(x)|; q, x)

= [n+ 1]
n∑
k=0

q−k
[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

×
∫ [k+1]/[n+1]

[k]/[n+1]
|f(t)− f(x)|dqt (22)
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On the other hand

|f(t)− f(x)| ≤ w(f ; |t− x|).

If |t− x| < δ, it is obvious that

|f(t)− f(x)| ≤
(

1 +
(t− x)2

δ2

)
w(f, δ). (23)

If |t− x| > δ, we use the following property

w(f, λδ) ≤ (1 + λ)w(f, δ) ≤ (1 + λ2)w(f, δ),

where we choose λ ∈ R+ as λ = |t−x|
δ . Therefore we

have,

|f(t)− f(x)| ≤
(

1 +
(t− x)2

δ2

)
w(f, δ) (24)

for |t−x| > δ. Consequently by means (23) and (24),
from (22) we get,

|B∗n(f ; q, x)− f(x)|

≤ [n+ 1]
n∑
k=0

q−k
[
n
k

]
xk

n−k−1∏
s=0

(1− qsx)

∫ [k+1]/[n+1]

[k]/[n+1]

(
1 +

(s− x)2

δ2

)
w(f, δ)dqt

=
{
B∗n(1; q, x) +

1
δ2
B∗n((s− x)2; q, x)

}
w(f ; δ)

=
{

1 +
1
δ2
B∗n((s− x)2; q, x)

}
w(f ; δ). (25)

Taking (6) and Remark 2 into account one can easily
obtain that

lim
n→∞

B∗n((s− x)2; qn, x) = 0.

So letting δn = B∗n((s − x)2; qn, x) and taking δ =√
δn, we finally get

‖B∗n(f ; q, x)− f(x)‖ ≤ 2w(f ;
√
δn), (26)

as desired.

Acknowledgements: The author would like to thank
to Professor Ogun Dogru for his valuable suggestions
and remarks during the preparation of this work.

References:

[1] G.E. Andrews, R. Askey, R. Roy, Special Func-
tions, Cambridge University Press, 1999.

[2] D. Barbosu, Kantorovich-Stancu Type Opera-
tors, J.Ineq. Pure and Appl. Math. 5, 2004, issue
3, article 53
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