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Abstract: In the present paper, Kantorovich type of Bernstein polynomials based on g-integers is constructed. Ap-
proximation properties and rate of convergence of these operators are established with the help of the Korovkin

theorem.
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1 Introduction

For each positive integer n, Philips [7] defined g-
Bernstein polynomials as;

Bu(f;q,x) = kzn::of <Ej> [ L ] o tlj:l(l—qsfr)-

(1
When ¢ = 1, B,(f;q,x) is the classical Bernstein
polynomial

Bo(f.2) = kszof (5 (7 )a-ar e

Kantorovich [6] modified the Bernstein operators
and defined the lineer positive operators K, :
Ly([0,1]) — C([0,1]) defined for any f € L;([0,1])
by;

(k+1)/(n+1)

K,(f;x) = (n+1) e (T) f(u)du,
kzop k /k

/n+1

Png(z) = < Z > (1 — )" h,

These operators are known as Kantorovich operators
in literature.

Now we recall the following definitions about q-
calculus [5] .

Let ¢ > 0. For each nonnegative integer r, the

g-integer [r], g-factorial [r]! and g-binomial [ Z },
(n > r > 0) are defined by

q#1,
T qg=1,

and

respectively.

The g-analog of the integration in the interval
[0, 0] is defined by [1]

b 0o
/O Fdt = (1 - bY f@h)d 0<q<1.
§=0

4
Note that

b b
lim/ f(z)dyx = / f(x)dz,
a—1Jo 0
provided that f(x) is continuous in the interval [0, b].
In this paper, we will establish the gq-analogue of
the Bernstein-Kantorovich operators and we will ex-
amine the approximation properties of the constructed
operator.

2 Approximation Properties
In this section we define the Kantorovich type g-
Bernstein polynomial as;

Bi(figx)=[n+1> ¢ " [ . ] at
k=0
n—k—1 [k+1]/[n+1]

<[] @-¢x) / F(t)d,t.

s=0 [k]/[n+1]
)
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We will discuss the approximation properties of Let us examine the g-integral on the right hand side of
the operator (5) when we replace ¢ in (5) by a se- the equality.
quence (gy,) in the interval (0, 1) such that

1 (k+1]/[n+1] [k+1]/[n+1] [K]/[n+1]
lim g, =1 and lim — =0 (6) /[ tdgt = /0 tdgt —/0 tdgt

n—00 n—00 [n] k]/[n+1]
are satisfied. = (1-q) [k +1] Z 2j [k +1]
Vin+1 &7 fnt1
Theorem 1 If the sequence (q,) satisfies the condi- j=0
tions (6) in the interval (0,1) then the operator (5) k < Tk
satisfy —(1=9 [n[—|—] 724" [n[—l—] 1
|Bn(fiq) = fll =0 @) =0
forevery f € C[0,a],0 < a < 1. :(1—q)[k+1]2 1
27 _ 2
Proof: Let us compute B (t%; ¢, z) for s = 0, 1, 2. [ +1] 12 q
We start with s = 0. —(1-9) (] 1
q 1121 — ¢2
n n n—k—1 [n + ] q
B;(l;q,x)—[n—kl]qu[ }xk H (1—-¢°x) _ 1 1 k4112 — (k]2
k=0 K s=0 1+q[n+1]2([ 17 =1k
/[k+1]/[n+1] ; ® ¢ 1 (I ')
X t. = 14¢q)+1
[k]/[n+1] ! 1+gq[n+1J?

1D

From the definition of g-integral we can write;
[k+1]/[n+1] [k+1]/[n+1] [K]/[n+1] Substituting (11) into (10) we get;
/ = [ dt- [ d
[ 0 0

k]/[n+1]

k+1] o=
(1-9) [+ 1] j;o a k;o 1 5=0
. (Ha+a+ 1}
—(1-gq) (k] qu {1—|—q[n+1]2
=0 :[n—i—l]Z[n]xk
1-¢ k+1]— [k 3 J k=1 F [+ 1J2
BETARRICIN NS
k X H (]‘ - qSl,)
= q s=0
[n+ 1] ", .
where we have used the properties +n 4] — { k ] v
[k + 1] - [k] = qka n—k—1 1 1
o0 x (1-q°z)
qu:1%7 for 0 <qg< 1. 5=0 1+q[n+1]2
=0 ' LR NN )
= x
Therefore it is easily seen from (8) that [n+1] — [n — E|l[k — 1]!
B, (1;q,7) = 1. )] n_k-1 . 1 1
ill esti X (1 -¢’z) +
Now we will estimate B} (¢°; ¢, x) for s = 1. From 0 14+q[n+1]
(5) we can write,
n ko1 Consequently we have,
* (4, _ k| T k 8
Bn(t,q,x)—[n—i—l]Zq [k]x (1—-¢°z) . ] 1 1
k=0 =0 B (tq,x) = r+ (12)
X / tdgt (10) _ . s
[K)/[n+1] Lastly we will examine B (t%; ¢, x) for s = 2. We
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have equality becomes,
1 1
n—k—1 =
~ ) m+121+q+¢?
B( 14, X n+12qk|: :|:B (1_(]37) n []' n—k—1
s=0 nj: k s 2
1— k
[k+1)/[n+1] % 2_: n— Kk -1 " 1:[0 (1= q'x)q’lk]
X / t2d,t (13) h=1 -
[k]/[n+1] n [n]! A
2 N k 1 _ S
* kz::l m—wE—1 1l (1=q'z)q
Making similar computations as in the previous cases n n—k—1
for the g-integral, one can find + [ Z } "k (1—¢q°z)
k=0 s=0
1] /In1 11/ fn1] - [n)! T
n n : k s 2
/ thqt:/ t2dgt T e =t (1—-g°x)q
(k]/[n+1] 0 k=2 S:O X
[k]/[n+1] r [n]! e
- 12d,t +Y ——e—=2" || (1—¢2)q
/0 e — [n— k]l[k — 1]! 0
_ 1 X 1 n [ ]‘ n—k—1
S 413 T T4+ ¢ ek 1— o
[k | X ; T - II G-a)
x {a" (U + 107 + [Rlk + 1) + [6]%) } - 0
(14) [n]! k Lo
2w 1L - a
k=2 s=0
n n—k—1
Substituting (14) into (13) and using the property [n]! k 1— ¢
ED By iy | U
k=1 s=0
[k+1] =q[k] +1 (15) Using the property given in (15) once more and then
rearranging the terms yields;
we can write, B 1 1
C n+1P2 1+q+¢?
1 1 n [ n—k—1
Bl (t?:q,x) = X S L (1-—
W500) = e X T X{kl[n—k] HO ae)
n n—k—1 2
% n l‘k H(l_qs$) XQ([k_l}_{'l)
k=0 k: s=0 n [n]' n—k—1
2 k 1—¢°
x (qlk] +1)? MRS rer v | St
g [n)! ity - 02
_ s -2
+Z[n—kz]'[kj—1]lx (1-¢°x) +1+[n][n—1]x22[nk ] b
k=1 s=0 =0
X (¢*lk =1 +q+1) n—k—3
n n—k—1 X 1-¢°z 2
+Z [n]' 2k (1 7qsx) S];IO ( 1 )q
2 mpr -t L w1r oy e
n— k s
+ [n]z [ ] x (1-4¢°x)q
<Gk =1+ 1) 2l 7 1
n—1 1 n—k—2
+ [n]z [ " i ] z* (1-¢°x)
Writing the terms explicitly, the right hand side of the k=0 s=0
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n—2 n—k—3

—I-[n][n—l]:in[ ] K H (1—¢°z)q
k=0 s=0
n—1 n—k—2
—i—:UZ{n;l]:r H l—qac}
k=0 s=0

Making the necessary computations we finally get,

1 1
B (t%q,z) = X
w50 2) n+172 " 1+q+¢?
x {[n][n — 1]z°¢* + [n]zq® + 2¢[n]z
+1+[n][n —1]962q2+[ Jzq + [n]a

+ [n][n — 1)2%q + [n Jz}.

More clearly,we have,

lln -1 ¢ +¢* +¢ 2
n+12 1+q¢+¢?
n]  ¢*+3q¢+2
[n+ 1 14+q+ ¢
1 1
n+12 14+ q+q¢*

Bi(t*q,7) =

+ (16)

Consequently replacing g by a sequence (g,,) such that
lim g, = 1 and taking the property (6) into account,
n—oo

from (9), (12) and (16) we can write,

B (1;qn,z) =2 1
By (tiqn,x) 3 x
B;(t2;qn,:c) = mQ,

respectively. Therefore the conditions of the Ko-
rovkin’s theorem are satisfied and the proof of the the-
orem is completed.

Remark 1: For the special case ¢ = 1 we have;

Bi(Liz) =1
n 1
B (t;x) =
n(b2) = ST 5T
nn—1) 4 2n 1
B (1% x) =
W52 = e T et Y e

Remark 2: The first and the second moment of
the operator B} (f; ¢, x) are

[n] 1 1
[n+1]_1>“[n+1]1+q

Bil(s — haa) = (

and
* oy -1 [+ +g
Bille —a)ia,z) = [ + 1] {q2+q+1}$2

N [n] {q2+3q+2}w
m+12 | 2+qg+1
+ ! q
n+12¢*+q+1

[n] 2 1 1
[n+1]$_7

2
+x°—2 T
1+qn+1]

respectively.

3 Order of Approximation

In this section, we compute the approximation order
of the operator B} (f;q,z) by means of modulus of
continuity.

Let f € C[0, a]. The modulus of continuity of f,
w(f,9), is defined by

w(f;0) = sup
|z—y|<d
z,y€[0,a]

[f (@) = f(y)] (17)

It is well-known that, for a function f € C0, a
we have

513%"1 w(f;0) =0 (18)
and
@)~ I < wirio) (P52 1) a9
for any 6 > 0.

The following theorem gives the rate of conver-
gence of the sequence B} (f; ¢, z) by means of mod-
ulus of continuity.

Theorem 2 If the sequence q := (qy,) satisfies the
conditions given in (6), then

IB;(f:q) — fIl < 2w(f,V/6,)  (20)
forall f € C[0, a],where
80 = By((s — )% ¢ ). 1)

Proof: Let f € C[0, a]. From the linearity and mono-
tonicity of B} (f; ¢, x) we can write,

fiq
|B(f;q,7) — f(2)]
BL(lf(t) = f(@)]; ¢, 2)

n n—k—1

=[n+1> q¢* [ Z ]xk IT @-¢
k=0 s=0

41/ 1]
x% ) - f@)ldt @2)

k]/[n+1]
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On the other hand
|f(t) = f(z)| < w(f;|t — ).
If |t — z| < 0, it is obvious that

(t — )
62

M@—f@ﬂﬁ(LF )wﬁﬁ) 23)

If |t — x| > 0, we use the following property
w(f,A8) < (L+ Nw(f,0) < (1+\)w(f,0),

where we choose A € RT as A = ”%;I‘. Therefore we
have,

—x)?
10— sl < (14 S5 Y uiro) v

for [t —z| > J. Consequently by means (23) and (24),
from (22) we get,

1B, (f;q,2) — f(2)]
<rudat| [+ I a-eo)
k=0 =0

[k+1]/[n+1] s — 2)2

k]/[n+1]

= {BZ(l; q, ) + %BZ((S —z)%; q,ﬂf)} w(f;0)

~{is BB fulsia. @)

Taking (6) and Remark 2 into account one can easily
obtain that

lim B ((s — x)% gn,x) = 0.

n—oo
So letting &, = B((s — x)?; gn, ) and taking § =
V/9,, we finally get

I1B;(f;0,2) — f(@)]| < 2w0(fiV/6n), (26
as desired.
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