Approximation By Kantorovich Type q-Bernstein Operators

ÖZGE DALMANOG̃LU
Çankaya University
Department of Mathematics and Computer
Ög̃retmenler Street, No:14, 06530 Balgat-Ankara
TURKEY

Abstract: In the present paper, Kantorovich type of Bernstein polynomials based on q-integers is constructed. Approximation properties and rate of convergence of these operators are established with the help of the Korovkin theorem.

Key-Words: Bernstein polynomial, Kantorovich type polynomials, q-integer, Korovkin theorem, Modulus of continuity

1 Introduction

For each positive integer n, Philips [7] defined qBernstein polynomials as;
$B_{n}(f ; q, x)=\sum_{k=0}^{n} f\left(\frac{[k]}{[n]}\right)\left[\begin{array}{l}n \\ k\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)$.
When $q=1, B_{n}(f ; q, x)$ is the classical Bernstein polynomial

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right)\binom{n}{k} x^{k}(1-x)^{n-k} \tag{2}
\end{equation*}
$$

Kantorovich [6] modified the Bernstein operators and defined the lineer positive operators K_{n} : $L_{1}([0,1]) \rightarrow C([0,1])$ defined for any $f \in L_{1}([0,1])$ by;

$$
\begin{gather*}
K_{n}(f ; x)=(n+1) \sum_{k=0}^{n} p_{n, k}(x) \int_{k / n+1}^{(k+1) /(n+1)} f(u) d u \\
p_{n, k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k} \tag{3}
\end{gather*}
$$

These operators are known as Kantorovich operators in literature.

Now we recall the following definitions about qcalculus [5] .

Let $q>0$. For each nonnegative integer r, the q-integer $[r]$, q-factorial $[r]$! and q-binomial $\left[\begin{array}{c}n \\ r\end{array}\right]$, ($n \geq r \geq 0$) are defined by

$$
[r]:=[r]_{q}:= \begin{cases}\frac{1-q^{r}}{1-q} & q \neq 1 \tag{5}\\ r & q=1\end{cases}
$$

$$
[r]!:=\left\{\begin{array}{lll}
{[r][r-1] \ldots[1]} & ; & q \geq 1 \\
1 & ; & q=1
\end{array}\right.
$$

and

$$
\left[\begin{array}{c}
n \\
r
\end{array}\right]:=\frac{[n]!}{[n-r]![r]!}
$$

respectively.
The q -analog of the integration in the interval $[0, b]$ is defined by [1]

$$
\begin{equation*}
\int_{0}^{b} f(t) d_{q} t=(1-q) b \sum_{j=0}^{\infty} f\left(q^{j} b\right) q^{j} \quad 0<q<1 \tag{4}
\end{equation*}
$$

Note that

$$
\lim _{q \rightarrow 1} \int_{0}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d x
$$

provided that $f(x)$ is continuous in the interval $[0, b]$.
In this paper, we will establish the q-analogue of the Bernstein-Kantorovich operators and we will examine the approximation properties of the constructed operator.

2 Approximation Properties

In this section we define the Kantorovich type qBernstein polynomial as;

$$
\begin{aligned}
B_{n}^{*}(f ; q, x) & =[n+1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \\
& \times \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \int_{[k] /[n+1]}^{[k+1] /[n+1]} f(t) d_{q} t
\end{aligned}
$$

We will discuss the approximation properties of the operator (5) when we replace q in (5) by a sequence $\left(q_{n}\right)$ in the interval $(0,1)$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} q_{n}=1 \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{1}{[n]}=0 \tag{6}
\end{equation*}
$$

are satisfied.
Theorem 1 If the sequence $\left(q_{n}\right)$ satisfies the conditions (6) in the interval $(0,1)$ then the operator (5) satisfy

$$
\begin{equation*}
\left\|B_{n}^{*}(f ; q)-f\right\| \rightarrow 0 \tag{7}
\end{equation*}
$$

for every $f \in C[0, a], 0<a<1$.
Proof: Let us compute $B_{n}^{*}\left(t^{s} ; q, x\right)$ for $s=0,1,2$.
We start with $s=0$.

$$
\begin{align*}
B_{n}^{*}(1 ; q, x)= & {[n+1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) } \\
& \times \int_{[k] /[n+1]}^{[k+1] /[n+1]} d_{q} t \tag{8}
\end{align*}
$$

From the definition of q-integral we can write;

$$
\begin{aligned}
\int_{[k] /[n+1]}^{[k+1] /[n+1]} d_{q} t= & \int_{0}^{[k+1] /[n+1]} d_{q} t-\int_{0}^{[k] /[n+1]} d_{q} t \\
= & (1-q) \frac{[k+1]}{[n+1]} \sum_{j=0}^{\infty} q^{j} \\
& -(1-q) \frac{[k]}{[n+1]} \sum_{j=0}^{\infty} q^{j} \\
= & \frac{1-q}{[n+1]}([k+1]-[k]) \sum_{j=0}^{\infty} q^{j} \\
= & \frac{q^{k}}{[n+1]}
\end{aligned}
$$

where we have used the properties

$$
\begin{aligned}
& {[k+1]-[k]=q^{k}} \\
& \sum_{j=0}^{\infty} q^{j}=\frac{1}{1-q}, \text { for } 0<q<1
\end{aligned}
$$

Therefore it is easily seen from (8) that

$$
\begin{equation*}
B_{n}^{*}(1 ; q, x)=1 \tag{9}
\end{equation*}
$$

Now we will estimate $B_{n}^{*}\left(t^{s} ; q, x\right)$ for $s=1$. From (5) we can write,

$$
\begin{align*}
B_{n}^{*}(t ; q, x)=[n & +1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \times \int_{[k] /[n+1]}^{[k+1] /[n+1]} t d_{q} t \tag{10}
\end{align*}
$$

Let us examine the q-integral on the right hand side of the equality.

$$
\begin{align*}
\int_{[k] /[n+1]}^{[k+1] /[n+1]} t d_{q} t= & \int_{0}^{[k+1] /[n+1]} t d_{q} t-\int_{0}^{[k] /[n+1]} t d_{q} t \\
= & (1-q) \frac{[k+1]}{[n+1]} \sum_{j=0}^{\infty} q^{2 j} \frac{[k+1]}{[n+1]} \\
& -(1-q) \frac{[k]}{[n+1]} \sum_{j=0}^{\infty} q^{2 j} \frac{[k]}{[n+1]} \\
= & (1-q) \frac{[k+1]^{2}}{[n+1]^{2}} \frac{1}{1-q^{2}} \\
& -(1-q) \frac{[k]^{2}}{[n+1]^{2}} \frac{1}{1-q^{2}} \\
= & \frac{1}{1+q} \frac{1}{[n+1]^{2}}\left([k+1]^{2}-[k]^{2}\right) \\
= & \frac{q^{k}}{1+q} \frac{1}{[n+1]^{2}}([k](1+q)+1) \tag{11}
\end{align*}
$$

Substituting (11) into (10) we get;

$$
\begin{aligned}
& B_{n}^{*}(t ; q, x)= {[n+1] \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) } \\
& \times\left\{\begin{array}{l}
\left.\frac{1}{1+q} \frac{1}{[n+1]^{2}}([k](1+q)+1)\right\} \\
=
\end{array}\right. \\
& \quad\left[\begin{array}{l}
n+1]
\end{array} \sum_{k=1}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \frac{[k]}{[n+1]^{2}}\right. \\
& \times \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
&+ {[n+1] \sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} } \\
& \times \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \frac{1}{1+q} \frac{1}{[n+1]^{2}} \\
&= \frac{1}{[n+1]} \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \\
& \times \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)+\frac{1}{1+q} \frac{1}{[n+1]} .
\end{aligned}
$$

Consequently we have,

$$
\begin{equation*}
B_{n}^{*}(t ; q, x)=\frac{[n]}{[n+1]} x+\frac{1}{1+q} \frac{1}{[n+1]} \tag{12}
\end{equation*}
$$

Lastly we will examine $B_{n}^{*}\left(t^{s} ; q, x\right)$ for $s=2$. We
have

$$
\begin{align*}
B_{n}^{*}\left(t^{2} ; q, x\right)=[n & +1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \times \int_{[k] /[n+1]}^{[k+1] /[n+1]} t^{2} d_{q} t \tag{13}
\end{align*}
$$

Making similar computations as in the previous cases for the q-integral, one can find

$$
\begin{align*}
\int_{[k] /[n+1]}^{[k+1] /[n+1]} t^{2} d_{q} t= & \int_{0}^{[k+1] /[n+1]} t^{2} d_{q} t \\
& -\int_{0}^{[k] /[n+1]} t^{2} d_{q} t \\
= & \frac{1}{[n+1]^{3}} \times \frac{1}{1+q+q^{2}} \\
& \times\left\{q^{k}\left([k+1]^{2}+[k][k+1]+[k]^{2}\right)\right\} \tag{14}
\end{align*}
$$

Substituting (14) into (13) and using the property

$$
\begin{equation*}
[k+1]=q[k]+1 \tag{15}
\end{equation*}
$$

we can write,

$$
\begin{aligned}
B_{n}^{*}\left(t^{2} ; q, x\right)= & \frac{1}{[n+1]^{2}} \times \frac{1}{1+q+q^{2}} \\
\times & \left\{\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)\right. \\
& \times(q[k]+1)^{2} \\
+ & \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \times\left(q^{2}[k-1]+q+1\right) \\
+ & \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \times(q[k-1]+1)\}
\end{aligned}
$$

Writing the terms explicitly, the right hand side of the
equality becomes,

$$
\begin{aligned}
& =\frac{1}{[n+1]^{2}} \frac{1}{1+q+q^{2}} \\
& \times \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) q^{2}[k] \\
& +2 \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) q \\
& +\sum_{k=0}^{n}\left[\begin{array}{c}
n \\
k
\end{array} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)\right. \\
& +\sum_{k=2}^{n} \frac{[n]!}{[n-k]![k-2]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) q^{2} \\
& +\sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) q \\
& +\sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k \prod_{s=0}^{n-k-1}}\left(1-q^{s} x\right) \\
& \\
& +\sum_{k=2}^{n} \frac{[n]!}{[n-k]![k-2]!} x^{k \prod_{s=0}^{n-k-1}}\left(1-q^{s} x\right) q \\
& \\
& \left.+\sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)\right\}
\end{aligned}
$$

Using the property given in (15) once more and then rearranging the terms yields;

$$
\begin{aligned}
&= \frac{1}{[n+1]^{2}} \frac{1}{1+q+q^{2}} \\
& \times\left\{\sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right)\right. \\
& \times q^{2}(q[k-1]+1) \\
&+ 2 q \sum_{k=1}^{n} \frac{[n]!}{[n-k]![k-1]!} x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
&+1+[n][n-1] x^{2} \sum_{k=0}^{n-2}\left[\begin{array}{c}
n-2 \\
k
\end{array}\right] x^{k} \\
& \quad \times \prod_{s=0}^{n-k-3}\left(1-q^{s} x\right) q^{2} \\
&+[n] x \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-2}\left(1-q^{s} x\right) q \\
&+[n] x \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-2}\left(1-q^{s} x\right)
\end{aligned}
$$

$$
\begin{aligned}
& +[n][n-1] x^{2} \sum_{k=0}^{n-2}\left[\begin{array}{c}
n-2 \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-3}\left(1-q^{s} x\right) q \\
& \left.+x \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-2}\left(1-q^{s} x\right)\right\}
\end{aligned}
$$

Making the necessary computations we finally get,

$$
\begin{aligned}
B_{n}^{*}\left(t^{2} ; q, x\right)= & \frac{1}{[n+1]^{2}} \times \frac{1}{1+q+q^{2}} \\
\times & \left\{[n][n-1] x^{2} q^{3}+[n] x q^{2}+2 q[n] x\right. \\
& +1+[n][n-1] x^{2} q^{2}+[n] x q+[n] x \\
& \left.+[n][n-1] x^{2} q+[n] x\right\}
\end{aligned}
$$

More clearly,we have,

$$
\begin{align*}
B_{n}^{*}\left(t^{2} ; q, x\right)= & \frac{[n][n-1]}{[n+1]^{2}} \frac{q^{3}+q^{2}+q}{1+q+q^{2}} x^{2} \\
+ & \frac{[n]}{[n+1]^{2}} \frac{q^{2}+3 q+2}{1+q+q^{2}} x \\
& +\frac{1}{[n+1]^{2}} \frac{1}{1+q+q^{2}} . \tag{16}
\end{align*}
$$

Consequently replacing q by a sequence $\left(q_{n}\right)$ such that $\lim _{n \rightarrow \infty} q_{n}=1$ and taking the property (6) into account, from (9), (12) and (16) we can write,

$$
\begin{aligned}
& B_{n}^{*}\left(1 ; q_{n}, x\right) \rightrightarrows 1 \\
& B_{n}^{*}\left(t ; q_{n}, x\right) \rightrightarrows x \\
& B_{n}^{*}\left(t^{2} ; q_{n}, x\right) \rightrightarrows x^{2}
\end{aligned}
$$

respectively. Therefore the conditions of the Korovkin's theorem are satisfied and the proof of the theorem is completed.
Remark 1: For the special case $q=1$ we have;

$$
\begin{aligned}
& B_{n}^{*}(1 ; x)=1 \\
& B_{n}^{*}(t ; x)=\frac{n}{n+1} x+\frac{1}{2(n+1)} \\
& B_{n}^{*}\left(t^{2} ; x\right)=\frac{n(n-1)}{(n+1)^{2}} x^{2}+\frac{2 n}{(n+1)^{2}} x+\frac{1}{3(n+1)^{2}}
\end{aligned}
$$

Remark 2: The first and the second moment of the operator $B_{n}^{*}(f ; q, x)$ are
$B_{n}^{*}((s-x) ; q, x)=\left(\frac{[n]}{[n+1]}-1\right) x+\frac{1}{[n+1]} \frac{1}{1+q}$
and

$$
\begin{aligned}
B_{n}^{*}\left((s-x)^{2} ; q, x\right) & =\frac{[n][n-1]}{[n+1]^{2}}\left\{\frac{q^{3}+q^{2}+q}{q^{2}+q+1}\right\} x^{2} \\
& +\frac{[n]}{[n+1]^{2}}\left\{\frac{q^{2}+3 q+2}{q^{2}+q+1}\right\} x \\
& +\frac{1}{[n+1]^{2}} \frac{q}{q^{2}+q+1} \\
& +x^{2}-2 \frac{[n]}{[n+1]} x^{2}-2 \frac{1}{1+q} \frac{1}{[n+1]} x
\end{aligned}
$$

respectively.

3 Order of Approximation

In this section, we compute the approximation order of the operator $B_{n}^{*}(f ; q, x)$ by means of modulus of continuity.

Let $f \in C[0, a]$. The modulus of continuity of f, $w(f, \delta)$, is defined by

$$
\begin{equation*}
w(f ; \delta)=\sup _{\substack{|x-y| \leq \delta \\ x, y \in[0, a]}}|f(x)-f(y)| \tag{17}
\end{equation*}
$$

It is well-known that, for a function $f \in C[0, a]$ we have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0^{+}} w(f ; \delta)=0 \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(x)-f(y)| \leq w(f ; \delta)\left(\frac{|x-y|}{\delta}+1\right) \tag{19}
\end{equation*}
$$

for any $\delta>0$.
The following theorem gives the rate of convergence of the sequence $B_{n}^{*}(f ; q, x)$ by means of modulus of continuity.
Theorem 2 If the sequence $q:=\left(q_{n}\right)$ satisfies the conditions given in (6), then

$$
\begin{equation*}
\left\|B_{n}^{*}(f ; q)-f\right\| \leq 2 w\left(f, \sqrt{\delta_{n}}\right) \tag{20}
\end{equation*}
$$

for all $f \in C[0, a]$, where

$$
\begin{equation*}
\delta_{n}=B_{n}^{*}\left((s-x)^{2} ; q ; x\right) \tag{21}
\end{equation*}
$$

Proof: Let $f \in C[0, a]$. From the linearity and monotonicity of $B_{n}^{*}(f ; q, x)$ we can write,

$$
\begin{align*}
& \left|B_{n}^{*}(f ; q, x)-f(x)\right| \\
& \leq B_{n}^{*}(|f(t)-f(x)| ; q, x) \\
& =[n+1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \quad \times \int_{[k] /[n+1]}^{[k+1] /[n+1]}|f(t)-f(x)| d_{q} t \tag{22}
\end{align*}
$$

On the other hand

$$
|f(t)-f(x)| \leq w(f ;|t-x|)
$$

If $|t-x|<\delta$, it is obvious that

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(1+\frac{(t-x)^{2}}{\delta^{2}}\right) w(f, \delta) \tag{23}
\end{equation*}
$$

If $|t-x|>\delta$, we use the following property

$$
w(f, \lambda \delta) \leq(1+\lambda) w(f, \delta) \leq\left(1+\lambda^{2}\right) w(f, \delta)
$$

where we choose $\lambda \in R^{+}$as $\lambda=\frac{|t-x|}{\delta}$. Therefore we have,

$$
\begin{equation*}
|f(t)-f(x)| \leq\left(1+\frac{(t-x)^{2}}{\delta^{2}}\right) w(f, \delta) \tag{24}
\end{equation*}
$$

for $|t-x|>\delta$. Consequently by means (23) and (24), from (22) we get,

$$
\begin{align*}
& \left|B_{n}^{*}(f ; q, x)-f(x)\right| \\
& \leq[n+1] \sum_{k=0}^{n} q^{-k}\left[\begin{array}{c}
n \\
k
\end{array}\right] x^{k} \prod_{s=0}^{n-k-1}\left(1-q^{s} x\right) \\
& \quad \int_{[k] /[n+1]}^{[k+1] /[n+1]}\left(1+\frac{(s-x)^{2}}{\delta^{2}}\right) w(f, \delta) d_{q} t \\
& = \\
& =\left\{B_{n}^{*}(1 ; q, x)+\frac{1}{\delta^{2}} B_{n}^{*}\left((s-x)^{2} ; q, x\right)\right\} w(f ; \delta) \tag{25}\\
& = \\
& =\left\{1+\frac{1}{\delta^{2}} B_{n}^{*}\left((s-x)^{2} ; q, x\right)\right\} w(f ; \delta) .
\end{align*}
$$

Taking (6) and Remark 2 into account one can easily obtain that

$$
\lim _{n \rightarrow \infty} B_{n}^{*}\left((s-x)^{2} ; q_{n}, x\right)=0
$$

So letting $\delta_{n}=B_{n}^{*}\left((s-x)^{2} ; q_{n}, x\right)$ and taking $\delta=$ $\sqrt{\delta_{n}}$, we finally get

$$
\begin{equation*}
\left\|B_{n}^{*}(f ; q, x)-f(x)\right\| \leq 2 w\left(f ; \sqrt{\delta_{n}}\right) \tag{26}
\end{equation*}
$$

as desired.
Acknowledgements: The author would like to thank to Professor Ogun Dogru for his valuable suggestions and remarks during the preparation of this work.

References:

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, 1999.
[2] D. Barbosu, Kantorovich-Stancu Type Operators, J.Ineq. Pure and Appl. Math. 5, 2004, issue 3 , article 53
[3] O. Dog̃ru and N. Özalp, Approximation by Kantorovich Type Generalization of Meyer-König and Zeller Operators, Glasn. Mat. 36, 2001, pp. 311-318.
[4] V. Gupta, Some approximation properties of qDurrmeyer operators, Applied Mathematics and Computation, In Press, 2007.
[5] V. Kac and P. Cheung Quantum Calculus, Springer-Verlag, Newyork-Berlin-Heidelberg, 1953.
[6] G.G. Lorentz, Bernstein Polynomials, University of Toronto Press, Toronto, 1953.
[7] G. M. Phillips, Bernstein Polynomials based on q-integers, Ann. Numer. Math. 4, 1997, pp. 511518.

