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Abstract: In this presentation, bivariate case of BBH operators based on the q- integers is constructed. Then Ko-
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1 Introduction
In [1] , Bleimann, Butzer and Hahn (BBH) introduced
the following operator, that is for x ≥ 0;

Ln(f ;x) = (1+x)−n
n∑
k=0

f

(
k

n− k + 1

)(
n
k

)
xk,

(1)

They investigated pointwise convergence properties
of (1) in a compact sub-interval of [0,∞).
Then Gadjiev and Çakar [2] obtained uniform conver-
gence of (1) on semi-axis [0,∞) on some subspace
of bounded and continuous functions by using the test
functions ( x

1+x)ν , ν = 0, 1, 2.
In 1996 q-based generalization of the classical Bern-
stein polynomials were introduced by G. M. Phillips
[3]. He has obtained rate of convergence for the Bern-
stein polynomials based on q-integers. Firstly let us
give some definitions about q-integers [5]:
For any fixed real number q > 0 and non-negative
integer k, the q-integer of the number k is defined by

[k]q =

{
1−qk
1−q , q 6= 1
k , q = 1

The q-factorial is defined in the following:

[k]q! =
{

[k]q [k − 1]q ... [1]q , k = 1, 2, ..
1 , k = 0

and q-binomial coefficient is defined as

[
n
k

]
q

=
[n]q!

[k]q! [n− k]q!
(n ≥ k ≥ 0)

Recently Aral and Doğru [4] gave a new generaliza-
tion of BBH operators based on q-integers as follows:
For x ≥ 0, f : R+ → R and 0 < q ≤ 1

Ln(f ; q, x) =
1

ln,q(x)

n∑
k=0

f

(
[k]q

[n− k + 1]q qk

)
q
k(k−1)

2

[
n
k

]
q

xk,

where

ln,q(x) =
n−1∏
s=0

(1 + qsx) .

They investigate uniform approximation of these op-
erators on some subspace of bounded and continuous
functions.
The bivariate case for the operators are first introduced
by D.D. Stancu [6]. He studied the bivariate Bernstein
polynomials and estimated the order of approximation
for these operators.
The aim of this paper is to construct bivariate q-BBH
operators, investigate Korovkin type approximation
properties and estimate the order of approximation in
terms of a modulus of continuity.
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2 Construction of the Bivariate Op-
erators

Let R2
+ = [0,∞) × [0,∞) , f : R2

+ → R and 0 <
qn1 , qn2 ≤ 1. We define the bivariate extension of the
q-Bleimann-Butzer ve Hahn operators as follows:

Ln1 ,n2 (f ; qn1 , qn2 , x, y) =
1

ln1,qn1
(x)

1
ln2,qn2

(y)

×
n1∑
k1=0

n2∑
k2=0

f

(
[k1]

[n1−k1 + 1] qk1n1

,
[k2]

[n2−k2 + 1] qk2n2

)

× q
k1(k1−1)

2
n1 q

k2(k2−1)
2

n2

[
n1

k1

]
qn1

[
n2

k2

]
qn2

xk1yk2

(2)

Here ln1,qn1
(x) =

n1−1∏
s=0

(
1 + qsn1

x
)
.

It is easy to check that (2) is linear and positive.
By choosing qn1 = qn2 = 1, BBH operators reduce to
the classical bivariate BBH operators given by

Ln1,n2(f ;x, y) =
1

(1 + x)n1

1
(1 + y)n2

n1∑
k1=0

n2∑
k2=0

f

(
k1

n1−k1 + 1
,

k2

n2−k2 + 1

)(
n1

k1

)(
n2

k2

)
xk1yk2 .

Now let us give some lemmas which are often used.

Lemma 1 The operator (2) satisfies these conditions:

1. Ln1 ,n2 (f ; qn1 , qn2 , x, y)=A
x
n1

(By
n2(f ; qn2 , x, y)),

2. Ln1 ,n2 (f ; qn1 , qn2 , x, y)=B
y
n2(Axn1

(f ; qn1 , x, y)).

Here

Axn1
(f ; qn1 , x, y) =

1
ln1,qn1

(x)

×
n1∑
k1=0

f

(
[k1]

[n1−k1 + 1] qk1n1

, y

)

× q
k1(k1−1)

2
n1

[
n1

k1

]
qn1

xk1 ,

By
n2

(f ; qn2 , x, y) =
1

ln2,qn2
(y)

×
n2∑
k2=0

f

(
x,

[k2]
[n2−k2 + 1] qk2n2

)

× q
k2(k2−1)

2
n2

[
n2

k2

]
qn2

yk2

Proof: 1. Axn1
(By

n2(f ; qn2 , x, y))

= Axn1

(
1

ln2,qn2
(y)

n2∑
k2=0

f(x, [k2]

[n2−k2+1]q
k2
n2

) q
k2(k2−1)

2
n2

×
[
n2

k2

]
qn2

yk2

)
= 1

ln2,qn2
(y)

n2∑
k2=0

Axn1

(
f(x, [k2]

[n2−k2+1]q
k2
2

), qn1 , x, y)
)

× q
k2(k2−1)

2
n2

[
n2

k2

]
qn2

yk2

= 1
ln2,qn2

(y)

n2∑
k2=0

q
k2(k2−1)

2
n2

[
n2

k2

]
qn2

yk2
n1∑
k1=0

1
ln1,qn1

(x)

×f( [k1]

[n1−k1+1]q
k1
n1

, [k2]

[n2−k2+1]q
k2
n2

)q
k1(k1−1)

2
n1

[
n1

k1

]
qn1

xk1

= 1
ln1,qn1

(x)
1

ln2,qn2
(y)

n1∑
k1=0

n2∑
k2=0

f

(
[k1]

[n1−k1+1]q
k1
n1

,

× [k2]

[n2−k2+1]q
k2
n2

)
q
k1(k1−1)

2
n1 q

k2(k2−1)
2

n2

[
n1

k1

]
qn1

×
[
n2

k2

]
qn2

xk1yk2

= An1 ,n2 (f ; qn1 , qn2 , x, y)
2. can be proven in a similar manner.

Lemma 2 Let ẽij : R2
+ → [0, 1) be the two dimen-

sional test function defined as ẽij = ( x
1+x)i( y

1+y )
j .

Then we have the following items for the operator (2):

i)Ln1 ,n2 (ẽ00; qn1 , qn2 , x, y) = 1,

ii)Ln1 ,n2 (ẽ10; qn1 , qn2 , x, y) =
[n1]

[n1 + 1]
x

1 + x
,

iii)Ln1 ,n2 (ẽ01; qn1 , qn2 , x, y) =
[n2]

[n2 + 1]
y

1 + y
,

iv)Ln1 ,n2 (ẽ20; qn1 , qn2 , x, y) =
[n1] [n1 − 1]
[n1 + 1]2

q2n1

× x2

(1 + x) (1 + qn1x)
+

[n1]
[n1 + 1]2

x

1 + x
,

v)Ln1 ,n2 (ẽ02; qn1 , qn2 , x, y) =
[n2] [n2 − 1]
[n2 + 1]2

q2n2

× y2

(1 + y) (1 + qn2y)
+

[n2]
[n2 + 1]2

y

1 + y
.

Proof:

i)Ln1 ,n2 (ẽ00; qn1 , qn2 , x, y) =
1

ln1 ,q1
(x)

1
ln2 ,q2

(y)

×
n1∑
k1=0

n2∑
k2=0

q
k1(k1−1)

2
n1 q

k2(k2−1)
2

n2

[
n1

k1

]
qn1

[
n2

k2

]
qn2
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For 0 ≤ q ≤ 1

n∑
k=0

q
k(k−1)

2

[
n
k

]
q

xk =
n−1∏
k=0

(1 + qkx) = ln,q(x).

So (i) holds [5].

ii) Ln1 ,n2 (ẽ10; qn1 , qn2 , x, y) = 1
ln1 ,qn1

(x)
1

ln2 ,qn2
(y)

×
n1∑
k1=1

n2∑
k2=1

[k1]
[n1+1]q

k1(k1−1)
2

n1 q
k2(k2−1)

2
n2

[
n1

k1

]
qn1

×
[
n2

k2

]
qn2

xk1yk2

= 1
ln1 ,qn1

(x)
[n1]

[n1+1]

n1∑
k1=1

q
k1(k1−1)

2
n1

[
n1 − 1
k1 − 1

]
qn1

×xk1

= x
ln1 ,qn1

(x)
[n1]

[n1+1]

n1−1∑
k1=0

q
k1(k1−1)

2
n1

[
n1 − 1
k1

]
qn1

×(qn1x)
k1

= [n1]
[n1+1]

x
1+x .

iii) can be proven in a similar way.
iv) With a direct computation we have

Ln1 ,n2 (ẽ20; qn1 , qn2 , x, y) = 1
ln1 ,qn1

(x)
1

ln2 ,qn2
(y)

×
n1∑
k1=1

n2∑
k2=1

[k1]2

[n1+1]2
q
k1(k1−1)

2
n1 q

k2(k2−1)
2

n2

[
n1

k1

]
qn1

×
[
n2

k2

]
qn2

xk1yk2

= 1
ln1 ,qn1

(x)
[n1−1][n1]

[n1+1]2

n1∑
k1=2

[k1 − 1] qn1

×
[
n1 − 2
k1 − 2

]
qn1

q
k1(k1−1)

2
n1 xk1 + 1

ln1 ,qn1
(x)

[n1]

[n1+1]2

n1∑
k1=1

[
n1 − 1
k1 − 1

]
qn1

q
k1(k1−1)

2
n1 xk1

= x2

ln1 ,qn1
(x)q

2
n1

[n1−1][n1]

[n1+1]2

n1−2∑
k1=0

[
n1 − 2
k1

]
qn1

q
k1(k1−1)

2
n1 (q2n1

x)k1 + x
ln1 ,qn1

(x)
[n1]

[n1+1]2

n1−1∑
k1=0[

n1 − 1
k1

]
qn1

q
k1(k1−1)

2
n1 (qn1x)

k1

= [n1][n1−1]

[n1+1]2
q2n1

x2

(1+x)(1+qn1x)
+ [n1]

[n1+1]2
x

1+x

v) Obvious.

3 Approximation Properties of Bi-
variate Operators

In this section some theorems on uniform convergence
for bivariate case will be given.
Let CB(R2

+) be the space of all bounded and con-
tinuous functions on R2

+. Then CB(R2
+) is a linear

normed space with

‖f‖CB(R2
+) = sup

x,y≥0
|f(x, y)| .

If
lim

n,m→∞
‖fn,m − f‖CB(R2

+) = 0

holds, then we say that the sequence {fn,m} converges
uniformly to f and it’s shown as fn,m ⇒ f .
Now, let us introduce modulus of continuity type
functionw(δ), so that the following conditions are sat-
isfied:
i)w(δ) is nonnegative and increasing for δ,

ii)w(δ1 + δ2) ≤ w(δ1) + w(δ2),
iii) lim

δ→0
w(δ) = 0.

Let Hw be the subspace of real valued functions satis-
fying ∀x, y ∈ R+

|f(x)− f(y)| ≤ w
(∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣) .
It can be obtained that Hw ⊂ CB(R+) for the
bounded and continuous functions f on R+.
For example, if we choose

w(t) = Mtα , 0 < α ≤ 1

we have

|f(x)− f(y)| ≤M |x− y|α

(1 + x)α(1 + t)α

so that it can be easily seen that Hw ⊂ LipMα.

Theorem 3 [5] Let An be the sequence of lin-
ear positive operators acting from Hw(R+) to
CB(R+)satisfying

lim
n→∞

∥∥∥∥An(( t

1 + t
)ν ;x)− (

x

1 + x
)ν
∥∥∥∥
CB

= 0, ν = 0, 1, 2

then for any function f ∈ Hw(R+)

lim
n→∞

‖An(f)− f‖CB = 0

holds.
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Now let us demonstrate that Theorem 3 also holds for
the bivariate case:

Theorem 4 Let q = (qn1) and q = (qn2) satisfies
0 < qn1 ≤ 1 , 0 < qn2 ≤ 1 and let qn1 → 1 and
qn2 → 1 for n1, n2 → ∞ . If the sequence of linear
positive operator An1 ,n2;
An1 ,n2 : Hw(R2

+) → CB(R2
+) satisfies the following

conditions;

i) lim
n1 ,n2→∞

‖An1 ,n2 (ẽ00; qn1 , qn2 , x, y)− ẽ00‖C(R2
+)

= 0, (3)

ii) lim
n1 ,n2→∞

‖An1 ,n2 (ẽ10; qn1 , qn2 , x, y)− ẽ10‖C(R2
+)

= 0, (4)

iii) lim
n1 ,n2→∞

‖An1 ,n2 (ẽ01; qn1 , qn2 , x, y)− ẽ01‖C(R2
+)

= 0, (5)

iv) lim
n1 ,n2→∞

‖An1 ,n2 (ẽ20 + ẽ02; qn1 , qn2 , x, y)− (ẽ20

+ẽ02)‖C(R2
+) = 0, (6)

then for any function f , f ∈ Hw(R2
+)

lim
n1 ,n2→∞

‖An1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)‖
C(R2

+)
= 0

holds. Here ẽij : R2
+ → [0, 1) ; ẽij = ( x

1+x)i( y
1+y )

j

are two dimensional test functions. On Hw(R2
+),

|f(t, s)− f(x, y)| ≤

w

(∣∣∣∣( t

1 + t
,

s

1 + s

)
−
(

x

1 + x
,

y

1 + y

)∣∣∣∣)
is defined as for bivariate case.

Proof: If f ∈ Hw(R2
+) then we have for any ε > 0

there exists a neighbourhood δ such that

|f(t, s)− f(x, y)| < ε

if
√

( t
1+t −

x
1+x)2 + ( s

1+s −
y

1+y )
2 < δ.

Also, boundness of f implies that there exists a posi-
tive constant M such that

|f(t, s)− f(x, y)| ≤
2M
δ2

[
(

t

1 + t
− x

1 + x
)2 + (

s

1 + s
− y

1 + y
)2
]

if
√

( t
1+t −

x
1+x)2 + ( s

1+s −
y

1+y )
2 ≥ δ.

Therefore, for all (t, s), (x, y) ∈ R2
+

|f(t, s)− f(x, y)| ≤ ε+
2M
δ2

[
(

t

1 + t
− x

1 + x
)2 + (

s

1 + s
− y

1 + y
)2
]
.

holds. Applying the operator An1 ,n2
to the above in-

equality we get

|An1 ,n2 (f)− f |C(R2
+)

≤ (ε+M) |An1 ,n2 (ẽ00)− ẽ00|

+ ε+
2M
δ2

[|An1 ,n2 (ẽ20 + ẽ02)− (ẽ20 + ẽ02)|

+2 |An1 ,n2 (ẽ10)− ẽ10|+ 2 |An1 ,n2 (ẽ01)− ẽ01|] .

By using the conditions (3)-(6) we find

lim
n→∞

‖An1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)‖
C(R2

+)
= 0

as desired. Now let us show that this theorem also
holds for bivariate q-Bleimann,Butzer and Hahn oper-
ators.

Theorem 5 Let q = (qn1) and q = (qn2) satisfies
0 < qn1 ≤ 1 , 0 < qn2 ≤ 1 and let qn1 → 1 and
qn2 → 1 for n1, n2 → ∞ . If the sequence of lin-
ear positive operator Ln1,n2 : Hw(R2

+) → CB(R2
+)

satisfy conditions (3)-(6), then Ln1,n2 converges uni-
formly to f in R2

+ for all f ∈ Hw(R2
+). That is;

∀f ∈ Hw(R2
+)

lim
n→∞

‖Ln1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)‖
C(R2

+)
= 0

Here ẽij = ( x
1+x)i( y

1+y )
j .

Proof: Below results can be obtained by using
Lemma 2

lim
n1 ,n2→∞

‖Ln1 ,n2 (ẽ00; qn1 , qn2 , x, y)− 1‖ = 0

is obvious.

‖Ln1 ,n2 (ẽ10; qn1 , qn2 , x, y)− ẽ10‖ =

sup
x,y≥0

∣∣∣∣∣ [n1]qn1

[n1 + 1]qn1

x

1 + x
− x

1 + x

∣∣∣∣∣ ≤
∣∣∣∣∣ [n1]qn1

[n1 + 1]qn1

− 1

∣∣∣∣∣
Since lim

n→∞
[n]

[n+1] = 1, (4) is justified. Similarly (5)
can also be shown.
After simple calculation

[n] [n− 1]
[n+ 1]2

=
1
q3

(
1− 2 + q

[n+ 1]
+

1 + q

[n+ 1]2

)
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can easily be found. When this result is substituted in
below equality, followings can be obtained.

‖Ln1 ,n2 (ẽ20 + ẽ02; qn1 , qn2 , x, y)− (ẽ20 + ẽ02)‖

= sup
x,y≥0

∣∣∣∣∣ [n1]qn1
[n1 − 1]qn1

[n1 + 1]2qn1

q2n1

x2

(1 + x) (1 + qn1x)

+
[n1]qn1

[n1 + 1]2qn1

x

1 + x

+
[n2]qn2

[n2 − 1]qn2

[n2 + 1]2qn2

q2n2

y2

(1 + y) (1 + qn2y)

+
[n2]

[n2 + 1]2
y

1 + y
− x2

(1 + x)2
− y2

(1 + y)2

∣∣∣∣
≤
(

1
q2n1

− 1
)

+
1
q2n1

(
2 + qn1

[n1 + 1]qn1

− 1 + qn1

[n1 + 1]2qn1

)

+
1

qn1 [n1 + 1]qn1

− 1
qn1 [n1 + 1]2qn1

+
(

1
q2n2

− 1
)

+
1
q2n2

(
2 + qn2

[n2 + 1]qn2

− 1 + qn2

[n2 + 1]2qn2

)

+
1

qn2 [n2 + 1]qn2

− 1
qn2 [n2 + 1]2qn2

.

Since [n+ 1]→∞ for n→∞ and q → 1

lim
n1 ,n2→∞

‖Ln(ẽ20 + ẽ02; qn1 , qn2 , x, y)

−(ẽ20 + ẽ02)‖ = 0

is found. So we have ∀f ∈ Hw(R2
+)

lim
n1 ,n2→∞

∥∥Ln1 ,n2
(f)− f

∥∥
CB(R2

+)
= 0

can be obtained by using Theorem 4.

4 Rates of convergence of the bivari-
ate operators

In this section rate of convergence of (2) will be estab-
lished by means of some bivariate modulus of smooth-
ness.
Modulus of continuity for bivariate case is defined as
follows: f ∈ Hw(R2

+):

∼
w(f ; δ1, δ2) = sup

t,x≥0
{|f(t, s)− f(x, y)| ;∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣ ≤ δ1, ∣∣∣∣ s

1 + s
− y

1 + y

∣∣∣∣ ≤ δ2,
(t, s) ∈ R2

+, (x, y) ∈ R2
+

}
.

Here
∼
w(f ; δ1, δ2) is satisfied following conditions

∀f ∈ Hw(R2
+):

i)
∼
w(f ; δ1, δ2)→ 0 if δ1 → 0 and δ2 → 0,

ii) |f(t, s)− f(x, y)| ≤

∼
w(f ; δ1, δ2)(1 +

∣∣∣ t
1+t −

x
1+x

∣∣∣
δ1

)(1 +

∣∣∣ s
1+s −

y
1+y

∣∣∣
δ2

).

(7)

Theorem 6 Let q = (qn1) and q = (qn2) satisfies
0 < qn1 ≤ 1 , 0 < qn2 ≤ 1 and qn1 → 1 and qn2 → 1
for n1, n2 →∞. So we have

|Ln1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤

4
∼
w(f ; δ1(x), δ2(y))

∀f ∈ Hw(R2
+) and x, y ≥ 0. Here

δk(x) =[
x2

(1 + x)2

(
qnk [nk]qnk [nk − 1]qnk

[nk + 1]2qnk

(1 + x)
(1 + qnkx)

−
2 [nk]qnk

[nk + 1]qnk
+ 1

)
+

[nk]qnk
[nk + 1]2qnk

x

1 + x

] 1
2

,

k = 1, 2. (8)

Proof: Applying the operators (2) to the inequality
(7) and according to the Cauchy-Schwarz inequality,
the proof is easily obtained.

InE×E ⊂ R+×R+, let Lipschitz type maximal
function space is defined as follows:

∼
Wα1,α2,E2 =

{f : sup(1 + t)α1(1 + s)α2(fα1,α2(t, s)− fα1,α2(x, y))

≤ M
1

(1 + x)α1

1
(1 + y)α2

;x, y ≥ 0, (t, s) ∈ E2

}
.

Here f is bounded and continuous function in R+, M
is positive constant and 0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1
then fα1,α2 is the following function as;

fα1,α2(t, s)− fα1,α2(x, y) =
|f(t, s)− f(x, y)|
|t− x|

α1 |s− y|
α2
.

In addition that d(x,E) is the distance between
x and E and this is also shown as d(x,E) =
inf {|x− y| ; y ∈ E}.
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Theorem 7 0 < α1 ≤ 1, 0 < α2 ≤ 1 and ∀f ∈
Wα1,α2,E2 we get

|Ln1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤

M
[
(δ1(x))

α1 (δ2(y))
α2 + 2 (d(x,E))α1 (d(y,E))

α2
]
.

where δ1(x) and δ2(y); defined as in (8).

Proof: Let x, y ≥ 0 and (x0, y0)εE. So it can be
written as

|f(t, s)− f(x, y)| = |f(t, s)− f(x0, y0)

+f(x0, y0)− f(x, y)|
≤ |f(t, s)− f(x0, y0) |+| f(x0, y0)− f(x, y)|

Applying (2) to the inequality and ∀f ∈ Wα1,α2,E2 ,
followings are obtained.

|Ln1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤

M

(
Ln1 ,n2

∣∣∣∣ t

1 + t
− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ s

1 + s
− y0

1 + y0

∣∣∣∣α2
)

+M

∣∣∣∣ x

1 + x
− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ y

1 + y
− y0

1 + y0

∣∣∣∣α2

It is obvious that (a + b)α ≤ aα + bα for 0 < α ≤ 1
and ∀a, b ≥ 0. So∣∣∣∣ t

1 + t
− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ s

1 + s
− y0

1 + y0

∣∣∣∣α2

≤
∣∣∣∣ t

1 + t
− x

1 + x

∣∣∣∣α1
∣∣∣∣ s

1 + s
− y

1 + y

∣∣∣∣α2

+
∣∣∣∣ x

1 + x
− x0

1 + x0

∣∣∣∣α1
∣∣∣∣ y

1 + y
− y0

1 + y0

∣∣∣∣α2

Using Hölder inequality with p1 = 2
α1

, p′1 = 2
2−α1

and p2 = 2
α2

, p′2 = 2
2−α2

, the proof is done.

Remark 8 If it is taken E = R+ as a special case of
Theorem 7, since d(x,E) = 0 and d(y,E) = 0, the
following result can be obtained:
∀f ∈Wα1,α2,R2

+

|Ln1 ,n2 (f ; qn1 , qn2 , x, y)− f(x, y)| ≤
M [(δ1(x))

α1 (δ2(y))
α2 ] .

where δ1(x) and δ2(y); defined as in (8).

5 Conclusion
The approximation properties of generalization of q-
Bleimann, Butzer and Hahn operators with n variables
can also be done in a similar way.
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