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Abstract: Mathematical modeling of physical systems are commonly faced situations. Solution depends on
the quality of the modeling directly. Among the many techniques, High Dimensional Model Representation
(HDMR) is a new method that brings great efficiency to the modeling of a system. Although Interpolation,
Splines, Finite differences etc. are useful methods, they do not often give as good results as HDMR does.
These methods need more reference points or nodes and higherorder polynomials for better results, and this
means higher cost calculations. However, HDMR offers new expansions, truncation of intended order, needed
for less sample points etc.. Since HDMR is a modeling method based on optimization and projection operator
theory, solving problems with differential equations, input - output systems require less calculations with high
effectiveness. In addition, HDMR contains analysis of variance calculations. Hence, HDMR is also an effective
method for statistics.
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1 Introduction
In this work, normalized linear exponential function

G (x1, x2, x3, x4) ≡
4∏

j=1

eαj(xj−cj)
2

,

αi, ci ∈ R

(1)

f (x1, x2, x3, x4) ≡
G (x1, x2, x3, x4)

‖G‖
,

(2)

is taken into consideration. Structurewise, this func-
tion shows the properties of Gaussian Distribution.
Whenαi goes to infinity, each exponential factor of
the function will approach the Dirac – Delta func-
tion with a support atci. It is not really feasible to
consider Interpolation or Splines to model the above
function for approximation, however a new approach
called High Dimensional Model Representation
(HDMR), expresses a multivariable function as a sum
of a constant, univariate, bivariate functions etc.. In
other words, HDMR uses a divide and conquer tech-
nique for problems having multivariate functions. The
computational complexity of multivariate calculations

are generally very high. However HDMR, as being
a divide and conquer approach, attempts to diminish
these complexities.

2 High Dimensional Model Repre-
sentation

High Dimensional Model Representation (HDMR)
renders to write a multivariate function symbolized by
f(x1, x2, ..., xn) as a sum of a constant, univariate,
bivariate etc.N variate functions[1, 2, 3, 4].

f (x1, ..., xN ) = f0 +

N∑
j=1

fj (xj)

+
N∑

i,j=1
i<j

fij (xi, xj) + · · ·

+f12...N (x1, x2, ..., xN ) (3)

There are2N terms at the right hand side of the ex-
pression (1.1). These terms are, a constant termf0,
univariate termsfi(xi), bivariate termsfij(xi, xj) and
so on, respectively. All the univariate terms above in-
dicate the contribution alone of each independent vari-
able dependence on the original function without any
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mutual interactions. Multivariate terms bring the dou-
ble, triple, ..., higher tuple mutual interactions’ con-
tributions. For example, if a zeroth order truncation
is made, ignoring the terms followingf0, the mean
value of the investigated function is obtained. There-
fore, one of the advantages of HDMR is that there
is no need to calculate every HDMR component to
get the approximate value of a function within a pre-
determined sensitivity by choosing the appropriate
version of HDMR. HDMR, its components and prop-
erties was first mentioned in 1993 by I. M. Sobol in
his article “Sensitivity Estimates for Nonlinear Math-
ematical Models”. Sobol used unit weight and[ 0, 1 ]
interval in his article Later, H. Rabitz generalized So-
bol’s work by introducing the idea of weight func-
tions [3, 4]. M. Demiralp defined and utilized vari-
ous versions of HDMR and generalized the interval
into [ ai, bi]. Demiralp’s group continues their work
in suggesting new HDMR versions. The HDMR com-
ponents fulfill the condition

∫ bj

aj

dxjWj (xj) fi1,...,ik (xi1 , ..., xik ) = 0 (4)

for xj ∈ {xi1 , ..., xik}, 1 ≤ j, k ≤ N This condition
is known as vanishing under integration. It helps us to
calculate HDMR terms as follows

f0 =

∫ b1

a1

dx1W1 (x1) ...

∫ bN

aN

dxNWN (xN )

×f (x1, ..., xN ) (5)

fi(xi) =

∫ b1

a1

dx1W1 (x1) ...

∫ bi−1

ai−1

dxi−1

×Wi−1 (xi−1)

∫ bi+1

ai+1

dxi+1Wi+1 (xi+1)

...

∫ bN

aN

dxNWN (xN ) f (x1, ..., xN )

−f0 1 ≤ i ≤ N (6)

fij (xi, xj) =

∫ b1

a1

dx1W1 (x1) ...

∫ bi−1

ai−1

dxi−1

×Wi−1 (xi−1)

∫ bi+1

ai+1

dxi+1

×Wi+1 (xi+1) ...

∫ bj−1

aj−1

dxj−1

×Wj−1 (xj−1)

∫ bj+1

aj+1

dxj+1...

×Wj+1 (xj+1)

∫ bN

aN

dxN

×WN (xN ) f (x1, ..., xN )

−f0 − fi (xi) − fj (xj) ,

1 ≤ i < j ≤ N (7)

Other components can be calculated similarly. Trun-
cations can be done by using the components above.
Zeroth,first and k-th order truncations are as follows
[1, 2, 3, 4],

s0 ≡ f0,

s1 ≡ s0 +

N∑
j=1

fj (xj) ,

...

sk ≡ sk−1 +

N∑
j1,...,jk=1
j1<···<jk

fj1...jk
(xj1, ..., xjk

)

(8)

We can define an orthogonality condition among the
HDMR terms as,

(fi1,...,ik , fj1,...,jℓ
) = 0,

1 ≤ i1 < i2 < · · · < ik ≤ N,

1 ≤ j1 < j2 < · · · < jℓ ≤ N,

1 ≤ k < ℓ ≤ N (9)

where the inner product is defined through the follow-
ing equation

(fi1,...,ik , fj1,...,jℓ
) ≡

∫ b1

a1

dx1W1 (x1) ...

×

∫ bN

aN

dxNWN (xN ) fi1,...,ik (xi1 , ..., xik )

fj1,...,jℓ
(xj1 , ..., xjℓ

) , (10)

where1 ≤ i1 < ... < ik ≤ N , 1 ≤ j1 < ... < jℓ ≤
N , 1 ≤ k, ℓ ≤ N . We can now define a norm as;

‖fi1...ik‖ = (fi1...ik , fi1...ik) (11)

Let f (x1, ..., xN ) be a square integrable function,
with the help of the orthogonality condition and the
scalar product defined above, we can get

‖f‖2 = ‖f0‖
2 +

N∑
i=1

‖fi‖
2 +

N∑
i,j=1
i<j

‖fi,j‖
2

+ · · · + ‖f12...N‖2 (12)
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if now we divide both sides of equation (1.8) by‖f‖2

‖f0‖
2

‖f‖2 +

N∑
i=1

‖fi‖
2

‖f‖2 +

N∑
i,j=1
i<j

‖fi,j‖
2

‖f‖2

+ · · · +
‖f12...N‖2

‖f‖2 = 1 (13)

This equation helps us to make the following defini-
tions;

σ0 ≡
‖f0‖

2

‖f‖2 , (14)

σ1 ≡

N∑
i=1

‖fi‖
2

‖f‖2 + σ0, (15)

σ2 ≡

N∑
i,j=1
i<j

‖fi,j‖
2

‖f‖2 + σ1 (16)

Theσis above (first three of them are given only) are
called “Additivity measurers of orderi”. It can be
clearly observed that these additivity measurers can
hold a value between zero and one

0 ≤ σ0 < ... < σN = 1 (17)

This means it is a monotonously increasing sequence.
The closer theσi is to one, the better the quality of the
i-th approximation.

3 HDMR Investigation for the Gauss
Type Exponential Function

In this work, the normalized linear exponential func-
tion was chosen because of its structure. Since the
function shows the properties of Gaussian Distribu-
tion, it is commonly used in statistics. Let us focus on
an inhomogenousN -dimensional hyperprismV. Our
aim is to find its center of gravity. Since it is nonho-
mogenous its mass and center of gravity can be found
by statistical formulas. Asµ(x) (where boldfacedx
means the set of independent variables) is the density
function, the body’s mass is given by,

M ≡

∫
V

dVµ (x) (18)

where the integration isN -fold. If we define the cen-
ter of gravity asG = (x) the averaged coordinates are
defined as

x ≡
1

M

∫
V

dVxµ (x) (19)

If we choose the HDMR terms for approximation, the
calculated closest approximation results gives us the
center of gravity of the body. Furthermore, normal-
ized linear exponential function was chosen because
plots of the function make peaks. Plots of the func-
tion for specific values ofαi andci values are enough
to determine the peak location.

In this work, the unit weightW (x1, x2, x3, x4) =

1 is utilized on the hyperprism[ 0, 1]4and investiga-
tions are made on how well various levels of HDMR
approximate the original function for variousαi andci
values. All calculations were made and the integrals
taken by using MAPLE. Although we chose realαi

and ci values, they can in general be complex num-
bers. Additivity measurers for various approximation
levels for different values ofαi andci are calculated
and results are compared. In this comparison, addi-
tivity measurers obtained by 9 differentαi and 5 dif-
ferent ci values are tabulated. Sensitivity of calcu-
lations were made using 50 digit arithmetic. In ad-
dition to these comparisons, plots are also used for
the same purpose. In the preparation stage of the ta-
bles,−1, 0, 0.5, 1, 1.5 values were chosen forci and
0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 40 values were cho-
sen forαi values, respectively. The table forci = −1
and for allαi values is as follows;

α (1 − σ0) (1 − σ1) (1 − σ2) (1 − σ3)
——- ———- ———- ———- ———-
0.001 3×10−6 0.0 0.0 0.0
0.010 3×10−4 3×10−8 0.0 0.0
0.100 3×10−2 3×10−4 2×10−6 3×10−9

0.500 5×10−1 1×10−1 1×10−2 4×10−4

1.000 8×10−1 5×10−1 1×10−1 2×10−2

5.000 1.0 1.0 1.0 5×10−2

10.000 1.0 1.0 1.0 1.0

It was observed that the functionG (x1, x2, x3, x4)’s
norm becomes small when the values ofαi get large.
For αi values greater than 14.805002501 the value of
the function is less than10−50 and MAPLE calcula-
tions accept this number as zero. Hence, for the values
αi > 14.805002501 the value of the normalized linear
exponential function converges to infinity. Therefore,
in the above table,αi = 40 is ignored. As it is ob-
served in the table, first order additivity measurer tells
us that it is enough to calculate first order HDMR ap-
proximation whenαi = 0, 001. When theαi values
become large, the quality of approximations become
lower. The best result was reached whenci is 0.5 and
αi is 0.001. For example, for the valuesci = 0.5 and
αi = 0.001 it is enough to calculate first order HDMR
components to get exact results.

In the table below, results are given forci = 0.5
As is observed from the table, even zeroth order trun-
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cation of HDMR is sufficient for specific purposes.
Results are satisfactory for up toαi = 5. αi = 40
is also included in the above table since in this case
such a value makes sense. The main point in this ta-
ble is, ci = 0.5 acts as symmetry axis. Therefore,
this value is also the center of gravity. Results are
also compared using plots. Since the normalized lin-
ear exponential function is a 4-variable function, the
variablesx3 andx4 are taken as constants in calcu-
lations and plots are drawn in 3-dimension. Since the
best results were reached atci = 0, 5, this point works
as a symmetry axis, this value is taken in all plots.

α (1 − σ0) (1 − σ1) (1 − σ2) (1 − σ3)
——- ———- ———- ———- ———-
0.001 2×10−8 0.0 0.0 0.0
0.010 2×10−6 0.0 0.0 0.0
0.100 2×10−4 2×10−8 0.0 0.0
0.500 5×10−3 1×10−5 1×10−8 0.0
1.000 2×10−2 2×10−4 6×10−7 0.0
5.000 3×10−1 5×10−2 3×10−3 9×10−5

10.000 7×10−1 3×10−1 5×10−2 4×10−3

40.000 1.0 8×10−1 5×10−1 2×10−1

Figure 1: Comparison of the normalized exponential
function forci = 0.5 andαi = 0.001 with first order
HDMR truncations1. Dark color (blue) denotes the
original function whereas the light one (green) corre-
sponds to first order HDMR truncation.

We also attempted to compare various HDMR ap-
proximation levels for variousαis. ci value was kept
at0.5 which turned up to yield the best resultys in ad-
ditivity measurer analysis. As is seen in Figure 1, the
function and the approximation coincide quite well.
This is because we choose very smallαi . Only first
order HDMR approximation is sufficient.

Figure 2: Comparison of the normalized exponential
function for ci = 0.5 and αi = 1.0 with first order
HDMR truncations1. Dark color (blue) denotes the
original function whereas the light one (green) corre-
sponds to first order HDMR truncation.

In Figure 2 it is observed that the function func-
tion and the first order HDMR truncation do not co-
incide as well as that observed in Figure 1. This ob-
viously happens because theαi value relatively much
higher. Deviation between the function and the ap-
proximation at the ends of the plot is observed.

Figure 3: Comparison of the normalized exponential
function forci = 0.5 and αi = 5.0 with second or-
der HDMR truncations2. Dark color (blue) denotes
the original function whereas the light one (red) cor-
responds to first order HDMR truncation.

It is observed that for the higherαi value of5.0
the first order truncations1 is rather insufficient. In
Figure 3, we compare the original function with the
second order HDMR truncations2. Whenαi grows,
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function tends to tighter form.

Figure 4: Comparison of the normalized exponential
function forci = 0.5 andαi = 40.0 with second or-
der HDMR truncations3. Dark color (blue) denotes
the original function whereas the light one (yellow)
corresponds to first order HDMR truncation.

Finally, asαi attains larger values, truncation or-
der of HDMR must be higher. For as high anαi value
40.0 truncation levels of zeroth, first, and second or-
der the agreement is quite poor. In Figure 4, the com-
parison is made for the third order HDMR truncation
level. It is seen in the plot that the function gets quite
a tight shape.

4 Conclusion
Calculations have shown us that HDMR is an efficient
and low cost method for approximations. Truncations
at intended order is another advantage. Even when the
values were chosen without extra care, higher order
HDMR truncations deal with this problem. Applica-
bility to many field of study and easy handling makes
HDMR a valuable approach.

All authors and the third author are grateful respec-
tively to WSEAS and Turkish Academy of Sciences
for their supports.
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Application to the Schrdinger’s Equation for
Free Particles Under an External Field with
Dipole Polarization and Vanishing Flux Bound-
ary Conditions,Proceedings of the Fourth Inter-
national Conferance on Tools For Mathemati-
cal Modelling, St. Petersburg, Russia, 2003, pp.
110–121.

[8] H. Kaya, M. Kaplan, H. Saygın, A Recursive
Algorithm for Finding HDMR terms for Sensi-
tivity Analysis ,Computer Physics Communica-
tions158, 2004, pp. 106–112.

[9] I.M. Sobol, S.S. Kucherenko, Global Sensitiv-
ity Indices for Non-linear Mathematical Models,
Wilmott Magazine.2, 2005, pp. 2-7.
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