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Abstract: Distributed spacecraft formation flying (DSFF) is a new technology in space mission design, aiming 
at replacing large satellites with multiple small satellites. It requires stringent control of the relative positioning 
of micro-satellites inside a formation flying. In this paper, the regulation of the relative distance between two 
satellites in a leader-follower formation is suggested, which implies a non natural motion of the follower. The 
system behaviour is described by the well known linear model for the relative motion between two satellites: 
the Hill-Clohessy-Wiltshire (HCW) equations. Then a linear quadratic regulator (LQR) is developed in order to 
guarantee closed-loop stability of the formation; an integral-action controller improves the regulation and 
eliminates the steady-state error. Then illustrative numerical examples are simulated to demonstrate the 
efficiency of the proposed approach. 
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1. Introduction 

Since the first launch in the 1950’s, satellites 
have proliferated in our sky for the purpose of 
Earth observing, deep space exploring, military 
surveillance, commercial and military 
communication, weather prediction etc. But 
conventional monolithic satellites still have 
some deficiencies[2,3,6]: 

High cost, directly related to its size and 
weight: the larger the satellite is, the larger and 
more costly the required launch vehicle is. 

Non-flexibility: one satellite on a fixed orbit 
matches with only one fixed mission with a 
limited observing baseline. 

Bad redundancy: in case a failure occurs, the 
entire mission fails. 

As a response to those deficiencies, an 
innovating technology has recently emerged. 

Distributed spacecraft formation flying 
(DSFF), to distribute the functionality of 
conventional monolithic satellites among a 
formation flying of numerous micro-satellites 
working together. Thus a large amount of 
advantages are provided: 

Size reduction naturally leads to cost 
reductions. 

According to different missions or error 
conditions, the formation of the multiple 
satellites can be changed autonomously or 
manually, which grants more flexibility and a 

more efficient use of resources. 
Extensive co-observing programs can be 

conducted without using extensive ground 
support: in the leader-follower architecture, only 
the leader satellite communicates with the 
ground station all the time, while the followers 
communicate only if necessary. 

Increased precision and observational 
baseline. 

Enhanced survivability and increased 
reliability: even if a certain number of satellites 
in the formation fail, the mission may still be 
accomplished. 

On one hand, the DSFF technology grants 
flexibility, reliability and autonomy to the 
formation. On the other hand, it requires a 
fastidious control of the architecture of the 
formation. Indeed, a good communication 
between the satellites inside the flying formation 
is incontrovertible. It means that the exact 
position of each satellite must be known at any 
time. Moreover, the very high density of 
satellites in a small area also requires a stringent 
control of relative distances between satellites in 
order to avoid collisions. 

In this paper, the regulation of the relative 
distance between a leader satellite and its 
follower using the Linear Quadratic Regulator 
(LQR) synthesis is performed. 

Before proceeding to the development of that 
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controller, we shall briefly establish the model of 
spacecraft relative position dynamics. 
 
 
2. The Hill-Clohessy-Wiltshire (HCW) 
Equations 

In this section, we begin with the classical 
Hill's equations that describe the motion of a 
follower spacecraft relative to a leader spacecraft. 
In order to present the Hill's equations we 
assume that the leader spacecraft is on a circular 
geostationary orbit around the Earth with 
constant angular velocity ω; and a rectangular 
moving coordinate frame is attached to the 
leader spacecraft with the x-axis directed 
radially outward along the local vertical, the 
y-axis pointing along the direction of motion, 
and the z-axis normal to the reference orbit 
plane. 

The linearized dynamic equations governing 
the motion of the follower spacecraft relative to 
the leader spacecraft are then given by [1,7]: 
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( , , )x y zU = Γ Γ Γ  is the thrust acceleration vector, 
that includes manual command and natural 
disturbances. 

One interesting property is that, although the 
equations describing the in-plane (x, y) motion 
are coupled, the out-of-plane (z) motion is 
uncoupled. The velocity dependant terms 2 xω  
and 2 yω  represent damping in the system. It is 
a non-dissipative and is present only because the 
motion is described in a rotating coordinate 
frame. 

The general solutions of the HCW equations 
can be easily obtained (considering 
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(2) 
An interpretation for these solutions shows 

that the combined effects of relative motion in 

all components of the HCW frame represents the 
general case of a neighbouring orbit which is: 

elliptic (due to oscillations in x) 
inclined (due to oscillations in z) 

of a different period than the target orbit ( due to  
the steady drift along the y-axis). 

For this project we are interested in a follower 
satellite with a periodic motion centered on the 
leader satellite. Thus two constraints appear: 
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The new expression can be written as follows: 
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If we consider a constant relative distance ρ 
between the leader and the follower, we have to 
assume 4 cases: 

parallel orbit: 
( ) ; ( ) 0; ( ) 0x t y t z tρ= = =  

follower tracking leader on the same orbit: 
( ) 0; ( ) ; ( ) 0x t y t z tρ= = =  

in-plane (x,y) circle around the leader: 
2 2 2( ) ( ) ; ( ) 0x t y t z tρ+ = =  

sphere around the leader:  
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Whatever the case, quick calculi show there is 
no solution unless ρ =0. For any other value of ρ, 
the motions are not natural. In (1), U  the 
commanded thrust but also the natural 
disturbance such as solar pressure, Earth 
oblateness, eventually shocks etc. The following 
developed controller is supposed to force the 
behaviours described in (5) and reject the natural 
disturbances. 
 
 
3. LQR Synthesis 
Given the HCW equations in (1) the state-space 

representation of our system is: 

          X AX BU
Y CX

= +
=

             (6) 

With [ , , , , , ]TX x y z x y z= , , [ , , ]T
x y zU = Γ Γ Γ
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The purpose of LQR synthesis is to compute a 
state feedback control U KX= − , where K is a 
gain matrix, so as to minimize the performance 
index: 
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This integral is the global energy of the system: 
the first term is the satellite energy and the 
second term represents the energy of the control 
signals. The energy must be minimized. Q is a 
positive-definite Hermitian matrix; R is a 
positive-definite Hermitian matrix. They are 
both weight matrixes that represent the 
expenditure of the energy. They are arbitrary 
parameters that are adjusted relating to the 
system[5]. 
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For that choice, we have considered that 
commanded thrust predominates and the satellite 
energy is mainly spent on in-plane motion[5,9]. 
 (A,B) is controllable and (A,C) is observable, so 
there is one and only one optimal controller: 

                       (9) 1K R B P− ∗=
where P is the solution of the Riccati equation: 

        (10) 1 0PA A P PBR B P Q∗ − ∗+ − + =
 

4. State Observer Synthesis  
Previously we have computed an optimal state 

feedback control. However the state vector X is 
unknown and must be rebuilt. We use a linear 
rebuilder in order to create a good steady-state 
estimator X̂ with the following structure: 

  ˆ ˆ ˆ( )X AX BU L Y CX= + + −        (11) 
The matrixes A, B and C are well identified. We 
can show that if A-LC is stable, then estimator 
error decreases to zero. L is chosen by pole 
placement: eigenvalues of A-LC shall all have a 
negative real part. 

The state-feedback command  can 
finally be applied (Fig.1). 

ˆU KX= −

 
Fig.1. Optimal state feedback control with linear 

state observer 
 

At this point, the controller can force the 
behavior of the system as expected in (e). The 
system is stable and follows standards various 
commands in an acceptable transitional period. 
However we can notice a non negligible 
overshoot, and a little steady state error. Plus, 
the controlled system can not reject the natural 
disturbances. 

In order to increase robustness and accuracy, a 
command by integral action is added to the 
previous controller. 
 
 
5. Command By Integral Action 

In automation, recourse to integral controller 
guarantees a null steady-state error when 
constant commands and disturbances are applied. 
Concerning our system those signals are not 
perfectly constant, but they both are oscillating 
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signals at pulsation ω. Motion period is about 24 
hours, while the time response of our controlled 
system is about 7 minutes. During this short time 
we can approximate input signals as constants, 
a gested method. 
We consider the new system: 

    )

nd see the efficiency of the sug

(X AX B U D
Y CX=

Where D represents the disturbing accelerating 
forces. We also add a new variable q(t), as the 
integral of the error between 

= + +           (12) 

the position 
required  and the real position Y: 
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variables are linked by the state equations: 
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gulate Y’ to 0, thanks 
to a sate feedback control: 

X t
U t K K X t K q t⎛ ⎞
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previously, but with a larger state vector
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 is illustrated Fig.2 with a block 
representation. 

 readapted. 
The principle

 
Fig.2 . Command by integral action state 

representation 
 
 
6. Simulation 

The followings illustrate the previous 
theoretical results. First of all we consider the 
fourth case in (e), sphere around the leader, with 
a simple LQR controller. Originally, the 
follower will be closed to his leader and quickly 
move to a 3D-motion on an inclined circle as 
shown on Fig.3a. The imposed motion equation 
is given by 

( ) 200cos( )
( ) 400sin( )

( ) 200 3 cos( )
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z t t

ω
ω
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On Fig.3b we check that the relative distance is 
constant during 86164s (time period for a 
geostationary spacecraft) after the settling period. 
However we can notice an important overshoot 
before the correct value is reached. 

Then we consider the first case of (e), parallel 
orbit, to focus on command by integral action 
comparing to simple LQR synthesis. 

( ) 200 ; ( ) 0 ; ( ) 0c c cx t km y t km z t km= = =  
We also add disturbances modeled by oscillating 
signals in the three directions, with a angular 
velocity ω, and an amplitude 10-6 m/s² (value 
similar to manual thrust). 
The comparison of the two methods during the 
settling period illustrates the expected results 
(Fig.4a): the command by integral action is 
really faster and has no overshoot. 

During the permanent motion, we zoom in 
around the expected value, 200 km. While a 
simple LQR synthesis reveals a small 
steady-state error and is affected by disturbances, 
the method by integral action rejects both of 
them. Robustness and accuracy have been 
improved. 
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Fig.3a: r with relative 3D-motion leader on the origin 
of the frame 

 

 
 

Fig.3b: relative distance 
 

 
 

Fig.4a: Overshoot is rejected 

 
 

Fig.4b: Disturbance are rejected 
 
 
7. Conclusion 

In this paper we developed a rigorous linear 
control for relative distance of spacecraft in 
formation that guarantees closed-loop stability, 
accuracy, and certain robustness as well. In 
particular an illustrative numerical simulation 
demonstrated the efficiency of command by 
integral action, associated to linear quadratic 
regulation. 

However, regulation on relative distance 
requires continuous adjustment and so 
continuous consumption of energy is necessary 
to force those behaviours, even without natural 
disturbances. A concrete evaluation of the needs 
in energy and a comparison with existing 
controllers for spacecraft information may show 
up the non sustainability of this system for the 
time being. 
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