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Abstract: A major problem in noisy image processing is the segmentation of its components. Many computer
vision tasks analyze regions after segmenting a given image, then minimize the segmentation error to build a good
automatic inspection system. In this paper, we propose a novel segmentation scheme for noisy images which
consists of a new denoising method and a modified active contour model. The method can be used as a general
technique for noisy image segmentation. Moreover, it is applied in the textile inspection field with a comparable
level of competence to that of human inspection.
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1 Introduction
Visual inspection is an important part of quality con-
trol in the textile industry where the defects in raw
or processed textile materials are identified. The term
”textile defect” covers various types of faults occur-
ring in the yarn and fabric resulted from the precedent
stages of the production. Due to the specific nature
of textiles, the defects encountered within textile pro-
duction must be detected and corrected at early stages
of the production process. There are currently over 50
categories of defects known to the weaving process
alone. Most of these defects appear only in the di-
rection of motion on the loom (the warp direction) or
across the width of the fabric (the pick direction) [1].
Most defects are yarn related, such as mispicks, end
outs, or broken yarns. Other defects are caused by
slubs, or waste, becoming trapped in the fabric struc-
ture as it is created. Additional defects are mostly ma-
chine related, and manifest themselves in the forms of
structural failures (tears or holes) or machine residue
(oil spots or dirt). Coupled with the size and speed of
the fabric as it passes over the inspection frame, the
wide range of defects serve to add complexity to vi-
sual inspection and increase the probability of missed
defects [1, 2]. On the other hand, 235 types of de-
fects and their possible cases are discussed [3]. These
defects may fall into one of the following classes:

1. Local point defects, like holes and loom fly are
characterized by a severe tone change over only

a few pixels or very few millimeters.

2. Medium scale defects, are characterized by
change of texture over a number of millimeters.

3. Extended defects, exhibiting a linear pattern ex-
tending over number of centimeters.

Image denoising is to produce a good estimate of
the original image from a noisy observation, and is a
basic preprocessing stage for image segmantation, es-
pecially for the textile image. Segmentation of noisy
image is still a challenging problem and its success-
ful solution is investigated either by simple intensity
threshlding or by model based deformation of tem-
plates. The former implies that the structures are well
separated by unique intensity patterns, whereas the
latter requires model templates characteristics for the
shape class. A wide variety of approaches for image
segmentation procedures are documented in the gen-
eral image processing literature and many successful
algorithms have been proposed and developed [4].

Active contour models [5] are appealing to users
as they only require a coarse initialization but then
converge to a stable and fully reproducible. The basic
idea in active contour models or snakes, is to evolve a
curve, subject to constraints from a given image, in
order to detect objects in that image. The existing
active contour models can be broadly classified into
three models according to their representation and im-
plementation, i.e., parametric active contour models,
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geometric active contour models, and geodesic active
contour models.

In this paper, we present a new active contour
model that enables to segment the non-uniform noise
image efficiently. Segmentation procedure starts with
de-noising an image by Log-Gabor filters. Then the
image gradient is used to drive an automatic initial-
ization of a level set contour towards the object. Im-
age forces are balanced with global smoothness con-
straints to converge a smooth object stably. The def-
inition and the use of Log-Gabor filters in the fabric
segmentation application are explained in section 2.
In section 3, the proposed active contour models is in-
troduced. The model is a combination of the classical
image-gradient based active contour and mean curva-
ture moving technique. Finally in section 4, some re-
sults are given to prove the effectiveness of the algo-
rithm with respect to noisy image segmentation and
fabric defect detection. Conclusions are drawn in sec-
tion 5.

2 Denoising Scheme

Image denoising is typically done by transforming an
image into some domain where the noise component
is more easily identified, a threshlding operation is
then applied to remove the noise, and finally the trans-
formation is inverted to reconstruct a noise free image.
If the noise in the image is not normally distributed or
non-uniform, the isotropic smoothing Gaussian will
not be effectively used to remove the noise.

Field [6] suggests that natural images are better
coded by filters that have Gaussian transfer function
when viewed on the logarithmic frequency. The log-
Gabor function has Gaussian transfer function when
viewed on the logarithmic scale and only can be nu-
merically constructed in the spatial domain via the in-
verse Fourier transform.

The present log-Gabor wavelet scheme has al-
ready been shown efficient in image de-noising [7, 8].
Most currently used de-noising methods are based
on anisotropic diffusion [9, 10] or wavelet threshold-
ing [11, 12, 13]. Wavelet or multi resolution image de-
noising applications usually proceed in three stages,
i.e., a transformation, a thresholding and an inverse
transform for reconstructing the image.

1. Transformation
The transform aims at describing the signal of
an image in a frequency domain where edges of
the image induce high amplitude while spatially
incoherent noise produces a low level of ampli-
tude. In the frequency domain the even sym-
metric filter is represented by two real-valued

Odd filter

Even filter

Fig. 1 : Odd and Even symmetric filters transfer func-
tions

log-Gaussian projections symmetrically placed
on each side of the origin as shown in Fig. 1.
The odd-symmetric filter is represented by two
imaginary valued log-Gaussian projections anti-
symmetrically placed on each side of the origin.
One can combine the convolution of the even and
odd symmetric filters into one operation. Ex-
ploiting the linearity of the Fourier Transform
where; FFT(A + B) = FFT(A) + FFT(B),
one can do the following: Multiply the FFT of
the odd-symmetric filter by i (i2 = −1) and
add it to the FFT of the even symmetric fil-
ter. The anti-symmetric projections from the
odd-symmetric filter will cancel out the corre-
sponding symmetric projection from the even-
symmetric filter. This leaves a single projection
(multiplied by 2) on the positive side of the fre-
quency spectrum as shown in Fig. 2. Thus if we

(a) Odd Symmetric filter (b) Even Symmetric filter

(c)Combined filter

Fig. 2 : Combination of odd and even symmetric filters
transfer function

construct a filter in the frequency domain with a

6th WSEAS International Conference on CIRCUITS, SYSTEMS, ELECTRONICS,CONTROL & SIGNAL PROCESSING, Cairo, Egypt, Dec 29-31, 2007    369



single log-Gabor projection on the positive side
of the frequency spectrum, we can consider this
filter to be the sum of the FFTs of the even and
odd symmetric filters (with the odd symmetric
filter multiplied by i). If we perform the convolu-
tion by multiplying this frequency domain filter
by the FFT of the image and take the inverse FFT
we end up with the even-symmetric convolution
residing in the real part of the result and the odd-
symmetric convolution residing in the imaginary
part.

Let M even
so and M odd

so denote the even-
symmetric and odd-symmetric filters at scale s
and orientation o, respectively. So the response
vector can be calculated by:

[Eso(x, y),Oso(x, y)] = [I(x, y) ∗M even
so

, I(x, y) ∗M odd
so ]

(1)

The amplitude of the response is given by:

Aso =
√

Eso(x, y)2 + Oso(x, y)2 (2)

The phase angle is:

θso(x, y) = tan−1(
Oso(x, y)
Eso(x, y)

) (3)

A more sensitive phase deviation measure can be
calculated by :

4θso(x, y) = cos(θso(x, y)− θ̄0(x, y))

− sin(θso(x, y)− θ̄0(x, y))
(4)

Where 4θso(x, y) is the mean phase angle at ori-
entation (o). Six orientations and six scales are
used in this research.

2. Thresholding
The basic thresholding technique permits to seg-
regate most of the signal from the noise. There
exists many methods for determining the opti-
mal threshold [11, 12, 16]. Additionally, more
elaborated methods that take into account the
neighborhood of each coefficient have been in-
troduced [12, 13]. In this research the noise is
taken to be:

T = µr + kσr (5)

where, µr is the mean noise response, σr is the
standard deviation, and k is a constant range from

2 to 3. According to Kovesi [14], the magnitude
of the response vector to a pure noise signal will
form like Rayleigh distribution.

R(x) =
x
σ2

g

exp
−x2

2σ2
g , (6)

where σ2
g is the variance of 2D normal distribu-

tion describing the position of total energy vec-
tor. The mean and variance of the Rayleigh dis-
tribution are given by :

µr = σg

√
π

2
(7)

σ2
r =

4− π

2
σ2

g (8)

Taking into consideration that the smallest scale
filter has the largest bandwidth and will give the
strongest noise response [14], the smallest scale
wavelet quadrature pair will spend most of their
time only responding to noise. A robust estima-
tion of the mean amplitude response of the small-
est scale filter can be obtained via the value of the
median of the Rayleigh distribution x such that:

∫ x

0

x
σ2

g

exp
−x2

2σ2
g =

1
2

V Median = σg

√
−2 ln(1/2)

(9)

Accordingly, the mean and standard deviation
can be estimated and the noise amplitude distri-
bution can be determined.

3. Back Transformation
In this step, a reverse transform is applied for re-
constructing the image. Fig. 3 shows the denois-
ing processing of an image using logGabor filter,
and one example of the process for a synthetic
image is illustrated in Fig. 4.

3 Modified Active Contour Model

Refereing to Fig. 4, it can be seen that the Log-Gabor
filter did not completely remove the noise from the
image and some noisy spikes still exist. A level set ap-
proach can remove the remaining spikes and segment
the image. The idea is to view the pixel values as a
topographic map; the intensity (somewhere between
white and black) at each pixel is the height of the sur-
face at that point. In a deformable model segmenta-
tion scheme, the model is driven by image forces and
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Fig. 3 : Image processing using logGabor filter

(a) Original image, (b) Amplitude spectrum,
(c) Fourier domain logGabor filter, (d) Filter re-
sponse with different orientations and scales,
(e) Filtered image
(The upper images in the third column shows the filter
response with different scales)

(a) Original image (b)Noisy image (c)Smoothed image

Fig. 4 : Noise removal using Log-Gabor filter

constrained by prior information on the shape of the
model. In a classical active contour, the image forces
are governed by the gradient magnitude and the shape
prior is a form of smoothness. Meanwhile, in the Chan
and Vese model [15], the contour is evolved by the
mean curvature flow.
The proposed active contour model is a combination

of the classical active contour based on the image gra-
dient and the mean curvature moving technique. Con-
sider the evolution of the set function C such that its
zero set tracks the evolving contour at a constant speed
v. We use the image gradient for moving the contour
given by,

∂C

∂t
= v · e(|∇I|) (10)

where, e(|∇I|) is a decreasing edge function given by
e(|∇I|) = c2/(c2 + |∇I|2) and controlled by a free
parameter c that determines the constant of edges, and
v is the speed of contour movement. The initial set
function C0 is given by the following equation:

C0 =


−ε, (x, y) ∈ Ω0 − ∂Ω0

0 (x, y) ∈ ∂Ω0

ε Ω− Ω0

(11)

Where: Ω0 is a subset in the image domain Ω, and
∂Ω0 denotes all the points on the boundaries of Ω0.
There are two kinds of energies which drive the con-
tour towards the objects. Outside force F o that pushes
the contour towards the object and internal force F in

and these forces are related as follows,

∂C

∂t
= v(F in − F o) · e(|∇I|) (12)

The term F in − F o represents the image forces that
used to drive the contour towards the object, so that
the contour may shrink when it encloses parts of the
background and may grow when the contour is inside
the object.

The image forces need to be balanced with some
smoothness constraints; a standard technique is to ap-
ply the mean curvature flow to the contour that is
the length of the contour and the area inside it. The
strength of the smoothing is controlled with the con-
stant factors µ1 and µ2.

∂C

∂t
= v [(F in − F o) · e(|∇I|)

+ µ1

(
4C − div(

∇C

|∇C|
) · e(|∇I|)

)
− µ2|∇C|

(13)

where 4 is the Laplacian operator. Lastly,
smoothness constraints are applied to the contour in
order to prevent it from leaking into small noise struc-
tures in the image that is not part of the target objects.
The smoothing behavior is defined by the relationship
between the derivative magnitude in the gradient di-
rection and the derivative in the direction of level set.
The strength of the smoothness is controlled by con-
stant factor ν as shown in Eq.( 14). This additional
constraints is used to control whether the curvature
flow is applied or not, and thus to stop the curvature
motion once the smallest spikes are removed. This
will make the very small contours disappear which
correspond to spikes of noise, however the boundaries
will remain sharp, since they will not blur under this
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Table 1 : Results of fabric defect detection

Defects type
Local Medium Extended

defects defects defects
Overall detection 94/100 91/100 87/100

rate

motion, and instead only move according to their cur-
vature as illustrated in Fig. 5.

In the next examples (illustrated in Fig. 6 and
Fig. 7), we discuss the comparisons between the orig-
inal active contour eq.( 12) and the proposed active
contour for detecting objects without gradient and de-
tecting multi-objects in noisy images.

∂C

∂t
= v[(uFin − uFo) · e(|∇uI|)

+ µ1

(
4C − div(

∇C

|∇C|
) · e(|∇uI|)

)
− µ2|∇uC|+ ν · div(

∇C

|∇C|
)]

(14)

(a)Initiative contours (b)Final contour (c)Binariezed image

Fig. 5 : Image segmentation using active contour

4 Experimental Results and Discus-
sion

The proposed approach has been tested using the
TILDA database [17], realized by the Technische Uni-
versitat Hamburg in 1996, which consists of 8 differ-
ent textiles materials without known orientation. Ex-
amples of results obtained are shown in Fig. 8, and the
experimental results are summarized in Table 1. The
method is more flexible for the detection of single and
multiple defects in woven and knitted fabrics for both
single and extended defects.

5 Conclusion
A novel segmentation scheme for noisy image was
presented in this paper, which consisits of a new de-
noising method and modified active contour model.

(0 iteration) (35 iteration)

(80 iteration) (150 iteration)

(a) Original active contour

(0 iteration) (10 iteration)

(25 iteration) (30 iteration)

(b) Modified active contour

Fig. 6 : Detection of object without gradient

This method was tested for natural and synthetic im-
ages and showed promising results.
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