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Abstract: The problem of steady laminar forced convection boundary layer flow of an incompressible viscous
fluid over a moving thin needle with variable heat flux is considered. The governing boundary layer equations
are first transformed into non-dimensional forms. These equations are then transformed into similarity equations
using the similarity variables, which are solved numerically using an implicit finite-difference scheme known as
the Keller-box method. The solutions are obtained for a blunt-nosed needle(m = 0). Numerical computations are
carried out for various values of the dimensionless parameters of the problem, which include the Prandtl number
Pr and the parametera representing the needle size. It has been found that the wall temperature are significantly
influenced by both parametersa and Prandtl numberPr. However, the Prandtl number has no effect on the flow
characteristics due to the decoupled boundary layer equations.
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1 Introduction

Thin needle is a body of revolution whose diameter is
of the same order as the velocity or thermal boundary
layers that it develops. By appropriately varying the
radius of the needle, the partial differential boundary
layer equations admit similarity solutions, which are
more revealing than the direct numerical integration of
the partial differential equations. As it is well-known,
an important aspect of experimental studies for the
flow and heat transfer characteristics is the measure-
ments of velocity and temperature profiles of the flow
field. The probe of the measuring devices, such as a
hot wire anemometer or shielded thermocouple, is of-
ten a very thin wire or needle. Meanwhile, boundary
layer behavior over moving solid surface is an impor-
tant type of flow occurring in a number of engineering
processes. Aerodynamic extrusion of plastic sheet,
cooling of an infinite metallic plate in a cooling bath,
the boundary layer along a liquid film in condensation
processes and a polymer sheet or filament extruded
continuously from a dye, or a long thread travelling
between a feed roll and a wind-up roll, are examples
of practical applications of continuous surfaces (see
[1, 2]). From an industrial point of view, the wall
shear stress distribution is perhaps the most impor-
tant parameter in this type of flow because it directly

determines the driving force (or torque) required to
withdraw the surface (see [3]). Therefore, the detailed
analysis of the flow over such moving slender needle-
shaped bodies is of considerable practical interest.

The problems of forced, free and mixed convec-
tion boundary layer flows over thin needles have been
investigated by many researchers. We mention here
Chen and Smith [4], Narain and Uberoi [5, 6], Chen
[7], Lee et al. [8] and Ahmad et al. [9] have studied
various aspects of this problem. Wang [10] has stud-
ied the problem of mixed convection boundary layer
flow on a vertical adiabatic thin needle with a concen-
trated heat source at the tip of the needle. This situ-
ation may be applied, for example, to a stick burning
at the bottom end. Agarwal et al. [11] have investi-
gated numerically the momentum and thermal bound-
ary layers for power-law fluids over a thin needle un-
der wide ranges of kinematic and physical conditions.
We also notice to this end that Gorla [12, 13, 14] has
studied the boundary layer flow in the vicinity of an
axisymmetric stagnation point on a circular cylinder
placed in a Newtonian or in a micropolar fluid.

All studies mentioned above on forced, free or
mixed convection boundary layer flows over thin nee-
dles refer to fixed needles immersed in a viscous
and incompressible fluid. However, the solutions for
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mixed convection boundary layer flow past a vertical
moving thin needle in a quiescent fluid with variable
heat flux have been reported recently by Ahmad et al.
[15]. The aim of this present paper is to study the
problem of steady forced convection boundary layer
flow over a moving thin needle with variable heat
flux in a quiescent fluid. It should also be mentioned
that due to entrainment of the ambient fluid, this flow
situation represents an intrinsically different class of
boundary layer flows, which have substantially dif-
ferent type of solutions as compared to the case of
a static needle. By the similarity transformation, the
partial differential equations governing the flow and
temperature fields are reduced to ordinary differential
equations, which are solved numerically using an im-
plicit finite-difference scheme called the Keller-box
method. The influences of the needle size and the
Prandtl number on the flow and heat transfer charac-
teristics are presented in graphical form.

2 Mathematical Formulation
Consider a steady laminar boundary layer flow of an
incompressible viscous fluid over a moving thin nee-
dle in a bulk fluid at a constant temperatureT∞. Fig-
ure 1 shows the slender paraboloid needle whose ra-
dius is described bȳr = R̄(x̄), wherex̄ and r̄ are
the axial and radial coordinates, respectively, with the
x̄− axis measured from the needle leading edge. The
needle is considered thin when its thickness does not
exceed that of the boundary layer over it. Under this
assumption, the effect of transverse curvature is of im-
portance, but the pressure variation along the surface
due to the presence of the needle can be neglected
(see [16]). It is assumed that the needle moves hor-
izontally with the velocityŪ(x̄) and is subjected to a
variable surface heat flux̄qw(x̄). Under the boundary
layer approximations, the basic boundary layer equa-
tions written in cylindrical coordinates are

∂

∂x̄
(r̄ū) +

∂
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(r̄v̄) = 0 (1)
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whereū andv̄ are the velocity components along the
x̄− andr̄− axes, respectively,̄T is the local fluid tem-
perature,ν is the kinematic viscosity andα is the con-
stant thermal diffusivity of the fluid. We assume that
the boundary conditions of Eqs. (1) – (3) are

v̄ = 0, ū = Ū(x̄),
∂T̄

∂r̄
= − q̄w(x̄)

k
at r̄ = R̄(x̄)

ū → 0, T̄ → T∞ as r̄ →∞ (4)

whereR̄(x̄) prescribes the surface shape of the ax-
isymmetric body.
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Figure 1: Physical model and coordinate system

We introduce now the following non-dimensional
variables:

x =
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L
, r = Re1/2

(
r̄

L

)
, u =

ū

U0
,

v = Re1/2
(
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)
, U(x) =
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,

R(x) = Re1/2

(
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)
, qw(x) =

q̄w(x̄)
q0

,

T =
kRe1/2

(
T̄ − T∞

)

q0L
, (5)

whereL is a characteristic length of the needle,U0

is the characteristic velocity,q0 is the characteristic
heat flux andRe = U0L/ν is the Reynolds number.
Substituting (5) into Eqs. (1) – (3), we get

∂
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(rv) = 0 (6)
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wherePr is the Prandtl number, with the boundary
conditions (4) become

v = 0, u = U(x),
∂T

∂r
= −qw(x) at r = R(x)

u = 0, T = 0 as r →∞ (9)

In order that Eqs. (6) – (8) become similar, we
take

U(x) = xm, qw(x) = x(5m−1)/2 (10)

wherem is a constant. We introduce now the follow-
ing similarity variables:

ψ = xf(η), T (x) = x2mθ(η) (11)
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where
η = xm−1r2 (12)

and ψ is the stream function which is defined in
the usual way asu = (1/r)∂ψ/∂r and v =
−(1/r)∂ψ/∂x. The introduction of the stream func-
tion automatically satisfies the continuity equation (6).
The surfaces of constantη = a, wherea is a non-
dimensional constant and is numerically small for a
slender body, corresponds to the surfaces of revolu-
tion. Settingη = a, Eq. (12) prescribes both shape
and size of the body with its surface given by

R(x) = a1/2x(1−m)/2 (13)

Of practical interests are pointed bodies and cylinders
for which we must have, from Eq. (13),m ≤ 1.
For example, the body is a cylinder whenm = 1, a
paraboloid whenm = 0, and a cone whenm = −1.
Substituting (11) and (12) into Eqs. (7) and (8), we
get the following ordinary differential equations:

2(ηf ′′)′ + ff ′′ −mf ′2 = 0 (14)
2

Pr
(ηθ′)′ + fθ′ − 2mf ′θ = 0 (15)

subject to the boundary conditions

f(a) =
(1−m)a

2
, f ′(a) =

1
2
, f ′(∞) → 0,

θ′(a) = −1
2
a−1/2, θ(∞) → 0 (16)

where primes denote differentiation with respect toη.
The physical quantities of interest are the skin

friction coefficientCf and the wall temperatureTw

which are defined as

Cf =
τw

ρŪ2/2
, Tw =

kRe1/2
(
T̄w − T∞

)

q0L
(17)

where the skin frictionτw is given by

τw = µ

(
∂ū

∂r̄

)

r̄=R̄(x̄)
(18)

Using (5), (11), (12) and (18), we get

CfRe1/2
x = 8a1/2f ′′(a), Tw = x2mθ(a) (19)

whereRex = Ū(x̄)x̄/ν is the local Reynolds number.

3 Results and Discussion
Generally, as mentioned in the previous section, the
body is a cylinder whenm = 1, a paraboloid when
m = 0 and a cone whenm = −1 (see Chen [7]).

However, when a solid object of any shape, such as
a needle in this present problem, exhibits a rectilinear
translational motion through a fluid medium, then all
parts of the solid object (needle) must have the same
velocity. This implies that the velocity of its surface
U has to be a constant and therefore, only the value
m = 0 should be considered in the present paper.
However, the only exception one may think of is an
elastic body. The most typical example is an elastic
sheet that is being stretched, in which the sheet veloc-
ity varies along the sheet. Therefore, in the present
problem, the results form = −1 andm = +1 are
not of any physical relevance since (10) is inconsis-
tent with a solid needle. Still, these results are solu-
tions of the mathematical problem posed, but without
any physical realism. According to Eq. (13) the value
of m = 0 corresponds to a blunt-nosed needle or a
paraboloid withR(x) = a1/2x1/2.

The system of decoupled ordinary differential
equations (14) and (15) subject to the boundary con-
ditions (16) has been solved numerically using an im-
plicit finite-difference method known as the Keller-
box scheme as described in the book by Cebeci and
Bradshaw [17] form = 0 (a blunt-nosed needle with
variable heat flux) and some values of the governing
parametera (in the range of0.001 ≤ a ≤ 0.1). We
consider that the needle moves in a fluid with dif-
ferent Prandtl numbers, i.e.Pr varies in the range
of 0.01 ≤ Pr ≤ 100. It is worth mentioning that
small values ofPr (¿ 1) physically correspond to
liquid metals, which have high thermal conductivity
but low viscosity, whilePr ∼ 1 corresponds to di-
atomic gases including air. On the other hand, large
values ofPr (À 1) correspond to high-viscosity oils
andPr = 6.8 corresponds to water at room tempera-
ture. Results are presented in 6 figures.

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

0.00 0.02 0.04 0.06 0.08 0.10
a

C
fR

e x
1/

2

m  = 0

 

Figure 2: Variation of the skin friction coefficient with
a for variousPr whenm = 0

The variations witha of the skin friction coeffi-
cientCfRe

1/2
x and the wall temperatureTw, given by

expressions (19) form = 0, are shown in Figures 2
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Figure 3: Variation of the wall temperature witha for
variousPr whenm = 0

and 3 forPr = 0.01, 0.1, 0.7, 1, 6.8 and10. Due to
the decoupled boundary layer equations (14) and (15),
it is seen from Figure 2 that there is only a unique skin
friction coefficient for all considered values ofPr at
different values ofa. It can also be seen from Figure
2 that the skin friction coefficient decreases with the
increase ofa for 0.001 ≤ a ≤ amin whereamin is the
value ofa when the skin friction coefficient is mini-
mum. Figure 2 also shows that foramin < a ≤ 0.1,
the skin friction coefficient increases with the increase
of a. It is worth mentioning that negative sign of the
skin friction coefficient in Figure 2 physically implies
that the fluid produces a dragging force on the surface.
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Figure 4: Variation of the wall temperature withPr
for various values ofa whenm = 0

Figures 3 and 4 show the variation witha and
Pr, respectively, for the wall temperature of a blunt-
nosed needle with variable heat flux (m = 0). It
can be seen from those figures that at any fixed val-
ues ofa, the wall temperature decreases asPr in-
creases. Physically, this is because the thermal dif-

fusivity in boundary layer becomes higher asPr in-
creases. Figure 3 shows that for a fixed value ofPr,
the wall temperature decreases with the increase ofa
for 0.001 ≤ a ≤ amin(Pr) whereamin(Pr) is the
value ofa when the wall temperature is minimum and
depending on Pr. On the other hand, it is seen from
Figure 3 that foramin(Pr) < a ≤ 0.1, the wall tem-
perature increases whena increases. Furthermore, it
can be seen from Figure 4 that forPr < Pr0.05,0.1

in

wherePr0.05,0.1
in is the value ofPr when the curves

a = 0.05 anda = 0.1 intersect, the wall temperature
increases with the increase ofa. On the other hand,
Figure 4 also shows that the wall temperature de-
creases with the increase ofa whenPr > Pr0.01,0.05

in

wherePr0.01,0.05
in is the value ofPr when the curves

a = 0.01 anda = 0.05 intersect.
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Figure 5: Velocity profiles for various values ofa with
m = 0
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Figure 6: Temperature profiles for various values ofa
with Pr = 0.7 andm = 0

The axial velocity profilesf ′(η) and the non-
dimensional temperature profilesθ(η) for a blunt-
nosed needle with variable heat flux (m = 0) are plot-
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ted versusη in Figures 5 and 6, respectively, for three
needle sizes, namelya = 0.01, 0.05 and0.1. Figure
5 shows that at any fixed value ofa, there is only a
unique velocity profile for all values ofPr. It is seen
from Figures 5 and 6 that the velocity and thermal
boundary layer thicknesses increase with the increase
of the needle sizea. An inspection of these figures
clearly shows that the thinner the needle, the smaller
is the value ofη for the free stream conditions to be
attained, i.e. the boundary layer thickness decreases
with the decreasing values ofa. It can also be clearly
seen from Figure 5 thatf ′′(η) → 0 asη →∞, i.e. the
shear stress vanishes outside the momentum boundary
layer.
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Figure 7: Temperature profiles for variousPr with
m = 0 anda = 0.01

Figure 7 displays the non-dimensional tempera-
ture profileθ(η) for a blunt-nosed needle with vari-
able heat flux (m = 0) for various values ofPr
(Pr = 0.01, 0.1, 0.7, 1, 6.8, 10) anda = 0.01. It is
shown that the temperature profile decreases asPr
increases. It is also shown that the thermal bound-
ary layer thickness decreases with an increase inPr.
Physically, this is because, asPr increases, the ther-
mal diffusivity decreases. This leads to the decrease
of the energy transfer ability that reduces the thermal
boundary layer.

4 Conclusions
The problem of steady laminar forced convection
boundary layer flows of an incompressible viscous
fluid over a moving thin needle in an ambient fluid is
studied. Calculations are carried out for a blunt-nosed
needle with variable heat flux (m = 0), which moves
in a fluid with a wide range of the Prandtl numbers
(0.01 ≤ Pr ≤ 100). The numerical results are also
obtained for various values of the dimensionless pa-
rameters, which include the Prandtl numberPr and

the parametera representing the needle size. The re-
sults show that the shape and the size of the needles
have strong effects on the velocity and the thermal
characteristics of the problem. Generally, it can be
concluded that the wall temperature and the temper-
ature profiles are significantly influenced by the con-
sidered parameters. However, the Prandtl number has
no effect on the local skin friction coefficient and the
velocity profiles due to the decoupled boundary layer
equations.
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