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Abstract: In this paper we use a numerical technique to analyze the onset of Marangoni convection in a horizontal
layer of electrically-conducting fluid heated from below and cooled from above in the presence of a uniform vertical
magnetic field. The top surface of a fluid is deformably free and the bottom boundary are rigid and free-slip. The
critical values of the Marangoni numbers for the onset of Marangoni convection are calculated and the latter is
found to be critically dependent on the Hartmann , Crispation and Bond numbers. In particular we present an
example of a situation in which there is competition between modes at the onset of convection.
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1 Introduction

Convection in a plane horizontal fluid layer heated
from below, known as the Rayleigh-Bénard convec-
tion, is the type of convection considered most fre-
quently. Rayleigh [1] was the first to solve the prob-
lem of the onset of thermal convection in a horizontal
layer of fluid heated from below. His linear analy-
sis showed that Bénard convection occurs when the
Rayleigh number exceeds a critical value. Theoreti-
cal analysis of Marangoni convection was started with
the linear analysis by Pearson [2] who assumed an
infinite fluid layer, a nondeformable case and zero
gravity in the case of no-slip boundary conditions at
the bottom. He showed that thermocapillary forces
can cause convection when the Marangoni number
exceeds a critical value in the absence of buoyancy
forces. Pearson [2] obtained the critical Marangoni
number, Mc = 79.607 and the critical wave number
ac = 1.9929. Linear stability analysis of Marangoni
convection with free-slip boundary conditions at the
bottom was first investigated by Boeck [3]. For free-
slip case, Boeck [3] obtained the critical Marangoni
number, Mc = 57.598 and the critical wave number
ac = 1.7003.

The effect of a magnetic field on the on-
set of steady buoyancy- and thermocapillary-driven
(Bénard-Marangoni) convection in a fluid layer with
a nondeformable free surface was first analyzed by
Nield [4]. He found that the critical Marangoni num-
ber monotonically increased as the strength of ver-
tical magnetic field increased. This indicates that

the Lorentz force suppressed Marangoni convection.
Later, the effect of a magnetic field on the onset of
steady Marangoni convection in a horizontal layer of
fluid has been discussed in a series of papers by Wil-
son [5, 6, 7]. The influence of a uniform vertical mag-
netic field on the onset of oscillatory Marangoni con-
vection was treated by Hashim and Wilson [8] and
Hashim and Arifin [9].

The above investigators pertain their analyses to
Marangoni convection in the presence of magnetic
field with no-slip lower boundary condition. In this
study, we consider the onset of steady Marangoni
convective instability in a horizontal fluid layer of
electrically-conducting fluid with a deformable upper
free surface and a free-slip lower surface, subject to a
uniform magnetic field. To the author’s best knowl-
edge, this problem has not been reported in the litera-
ture. The linear stability theory is applied and the re-
sulting eigenvalue problem is solved numerically. The
effects of the Hartmann number and a free surface de-
formation on the onset of steady Marangoni convec-
tion are studied.

2 Problem formulation
Consider a horizontal fluids layer of depth d heated
from below subject to a uniform vertical magnetic
field and a uniform vertical temperature gradient. The
fluid layer is bounded below by a horizontal solid
boundary at constant temperature T1 and above by
a free surface at constant temperature T2 which is in
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Figure 1: Geometry of the unperturbed state

contact with a passive gas at constant pressure P0 and
constant temperature T∞. We used cartesian coordi-
nates with two horizontal x- and y-axes are located at
the lower solid boundary and a positive z-axis is di-
rected toward the free surface. The surface tension, τ
is assumed to be a linear function of the temperature

τ = τ0 − γ (T − T0), (1)

where τ0 is the value of τ at temperature T0 and the
constant γ is positive for most fluids. The density of
the fluids is given by

ρ = ρ0{1 − α(T − T0)}, (2)

where α is the positive coefficient of the thermal liq-
uid expansion and ρ0 is the value at the reference tem-
perature T0.

Subject to the Boussinesq approximation the gov-
erning equations for an incompressible, ellectrically
conducting fluid in the presence of a magnetic field
are

∇ · U = 0, (3)

∇ · H = 0, (4)(
∂

∂t
+ U · ∇

)
U = −1

ρ
∇Π + ν∇2U +

μ

4πρ
(H · ∇)H, (5)

(
∂

∂t
+ U · ∇

)
H = (H · ∇)U + η∇2H, (6)

(
∂

∂t
+ U · ∇

)
T = κ∇2 T. (7)

where U is the fluid velocity, H is the magnetic
field, T is the temperature and Π = p + μ|H|2/8π
is the magnetic pressure, where p is the fluid pres-
sure. When motion occurs the upper free surface
of the layer will be deformable with its position at
z = d + f(x, y, t). At the free surface, we have the
usual kinematic condition together with conditions of

continuity of the normal and tangential stresses, and
for the temperature obeys Newton’s law of cooling, -
k∂T/∂n = h(T−T∞), where k and h are the thermal
conductivity of the fluid and the heat transfer coeffi-
cient between the free surface and the air, respectively,
and n is the outward unit normal to the free surface.
At the lower rigid boundary the usual no-slip condi-
tions requires continuity of velocity between the solid
and the fluid.

To simplify the analysis, it is convenient to write
the governing equations and boundary conditions in
a dimensionless form. In the dimensionless formula-
tion, scales for length, time, velocity, temperature and
magnetic field have been taken to be d, d2/ν, ν/d,
βdν/κ and μH/η respectively. Furthermore, six di-
mensionless groups appearing in the problem are the
Marangoni number M = γβd2/ρνκ, the Hartmann
number (the square root of the Chandrasekhar num-
ber) H = μHd(σ/ρν)1/2, the Biot number Bi =
hd/k, the Bond number Bo = ρgd2/τ0, the Prandtl
number P1 = ν/κ and the magnetic Prandtl number
P2 = ν/η.

3 Linearized problem

The linearized equations and boundary conditions
governing the onset of Marangoni convection in
an initially quiescent horizontal fluid layer bounded
above by a deformable free surface and bounded be-
low by a thermally conducting planar boundary sub-
ject to a uniform vertical magnetic field and a uniform
temperature gradient have been obtained by several
authors (see, for example, Hashim and Arifin [9]) and
are given by

(D2 − a2)T + w = 0, (8)

[
(D2 − a2)2 − H2D2

]
w = 0, (9)

subject to
w = 0, (10)

P1Cr[(D2−3a2−H2−s)Dw]−a2(a2 +Bo)f = 0,
(11)

P1(D2 + a2)w + a2M(P1T − f) = 0, (12)

hz = 0, (13)

P1DT + Bi(P1T − f) = 0, (14)

evaluated on the undisturbed position of the upper free
surface z = 1, and

w = 0, (15)

D2w = 0, (16)
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hz = 0, (17)

T = 0, (18)

on z = 0. The operator D = d/dz denotes differen-
tiation with respect to the vertical coordinate z. The
variables w, T , hz and f denote respectively the verti-
cal variation of the z-velocity, temperature, magnetic
field and the magnitude of the free surface deflection
of the linear perturbation to the basic state with total
wave number a in the horizontal x-y plane and com-
plex growth rate s.

4 Solution of the Linearized problem

In the general case s = 0, we follow the solution ap-
proach of Hashim and Wilson [8] and seek asymptotic
solutions for w, T in the forms

w(z) = ACeξz, T (z) = Ceξz, (19)

where the exponent ξ and the complex contants A and
C are to be determined. Substituting these forms into
the Eqs. (8) and (9) and eliminating A and C we ob-
tain a sixth-order algebraic equation for ξ, namely

(ξ2 − a2)
[
(ξ2 − a2 − s)2 − H2ξ2

]
= 0, (20)

with six distinct roots, which we denote by
ξ1, . . . , ξ6. where the values of ξ1, . . . , ξ6 are solu-
tions of the fourth-order algebraic equation

(ξ2 − a2 − s)2 − H2ξ2 = 0, (21)

while ξ5 = a and ξ6 = −a. Denoting the values of
A and C corresponding to ξ for i = 1, . . . , 6 by Ai

and Ci, respectively, we can use Eq (9) to determine
Ai. We can use Eq.(11) to eliminate the free surface
deflection

f =
P1Cr

(
D2 − 3a2 − H2

)
Dw

a2(a2 + Bo)
, (22)

evaluated on z = 1, leaving the six boundary condi-
tions (11), to determine the six unknowns C1, ..., C6,
and the general solution to the stability problem there-
fore

w(z) =
6∑

i=1

AjCje
ξjz, T (z) =

6∑
j=1

Cje
ξjz. (23)

The dispersion relation between M , a, Cr, H2, Bo

and Bi is determined by substituting these solutions
into boundary conditions and evaluating the result-
ing 6 × 6 real determinants of the coefficients of the
unknowns, which can be written in the form M =
−D1/D2, where the two 6 × 6 real determinants D1

and D2 are independent of M .
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Figure 2: Numerically-calculted Marangoni number,
M as a function of the wave number, a, for various
values of Crispation numbers, Cr in the case H = 0 ,
Bi = 0 and Bo = 0.1.

5 Results

The effect of a magnetic field on the onset of
Marangoni convection in a fluid layer with free-slip
bottom in the case of a deformable free surface (Cr �=
0) is investigated numerically. Before presenting the
numerical results, it is helpful to specify the range
for parameters Bi, Bo and Cr which are respectively
given by 10−3 ≤ Bi ≤ 10−1, 10−3 ≤ Bo ≤ and
10−6 ≤ Cr ≤ 10−2 for most fluids layers of depths
ranging from 0.01 cm to 0.1 cm and are in contact with
air (see Palmer and Berg (1972)). All numerical cal-
culations reported in this paper are done for the case
Bi = 0, Bo = 0.1 and P1 = 1.

Figure 2 shows the numerically-calculated steady
marginal stability curves plotted for different values
crispation number Cr in the case H = 0. The crispa-
tion number Cr, associated with the inverse effect of
the surface tension, represents the degree of the free
surface deformability. When Cr becomes large (corre-
sponding to weak surface tension), the marginal curve
has global minimum at zero wavenumber. In contrast,
for small values of Cr, the marginal curve has global
minimum at nonzero wavenumber. At some transition
value of Cr, the marginal curve has two local min-
ima that is one at zero wave number and the other
at nonzero wave number. The transition value of Cr

for the case shown in Fig. 2 is Cr � 0.0001764.
For Cr greater than 0.0001764, the wave number at
marginal stability suddenly jump from nonzero num-
ber to zero. Similar competition between different
modes was identified by Hashim and Arifin [9] in the
case no-slip condition.

Figure 3 shows the numerically-calculated
Marangoni number, M as a function of the wavenum-
ber, a for different values of the Hartmann number,
H in the case Cr = 0. From Fig. 3 it is seen that
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Figure 3: Numerically-calculted Marangoni number,
M as a function of the wavenumber, a, for a various
values of Hartmann numbers, H in the case Cr = 0 ,
Bi = 0 and Bo = 0.1.

Cr = 0.001
Cr = 0.00037115
Cr = 0.0001
Cr = 0

a

M

6543210

1400

1200

1000

800

600

400

200

0

Figure 4: Numerically-calculted Marangoni number,
M as a function of the wavenumber a, for various val-
ues of Crispation numbers, Cr in the case H2 = 100 ,
Bi = 0 and Bo = 0.1.

the critical Marangoni number increase with an
increase of the Hartmann number. Thus, the effect of
magnetic field make the system become more stable.
Numerically-calculated Marangoni number, M as a
function of the wavenumber, a for different values of
the Cr �= 0 in the case H2 = 300 are shown in Fig.
4. The figure shows parts of the marginal stability
curves in the case Cr = 0.00037115 and H2 = 300 in
which zero mode (infinite wavelength) and nonzero
mode (finite wavelength) occur simultaneously at the
onset of convection.

Figure 5 shows the numerically-calculated
Marangoni number, M as a function of the wavenum-
ber, a for different values of the Hartmann number,
H in the case Cr = 0.001. In this case, the marginal
stability curve have a global minimum at the nonzero
value of a without a magnetic field. But, the marginal
stability curve always have a global minimum at zero
value in the limit of large magnetic field. We also
found two steady modes occur simultaneously at the
onset of convection when H2 = 300.
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Figure 5: Numerically-calculted Marangoni number,
M as a function of the wavenumber, a, for various val-
ues of Hartmann numbers, H in the case Cr = 0.001
, Bi = 0 and Bo = 0.1.

6 Conclusions

The effect of the magnetic field on the onset of
steady Marangoni convection in a horizontal layer of
electrically-conducting fluid which is free above and
rigid below with free-slip condition has been studied.
If the free surface is nondeformable, the absence of a
magnetic field always has the stabilizing effect of in-
creasing the critical Marangoni number for the onset
of steady convection. If the free surface is deformable,
then all the marginal stability curves have two local
minima. The linear analysis presented in this work re-
vealed a situation in which two steady modes compete
at the onset of convection.
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