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Abstract: A new sliding mode control based on developed power reaching law method is derived to control a 
satellite formation with initial deployment inaccuracy and perturbation in space. It is proved that the new 
method could guarantee system stability. C-W equations are used to model the follower satellite relative motion 
with respect to the leader. The numerical simulation results show that the new control exhibits not only strong 
robustness to the unknown perturbation bounded, but also effectiveness of eliminating chattering caused by 
high-frequency switch control. 
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1. Introduction 

Satellite formation flying is described that 
several satellites are keeping a special relative 
position, communicating with each other, and 
working together in order to perform a unified 
mission when they reside near a natural orbit. 
Recently, Satellite formation flying is attracting 
more and more countries’ attention since it can 
provide numerous advantages: cost reduction, 
better flexibility, increased precision and 
observational baselines, enhanced survivability 
and raised reliability. For the development of 
satellite formation, control is a crucial technique 
and many control methods have been used to 
design controllers. The LQ and PID control 
methods are first applied to the formation flying 
system[9 10 11]. However, both of above are 
based on the linear C-W model which has some 
limitations in representing the true motion. Thus, 
uncertain-model-based controllers have been 
researched in some literatures. For example, 
Bernstein[12] proposed an adaptive asymptotic 
tracking strategy for the spacecraft attitude of 
the formation system in the case that the 
spacecraft’s inertia matrix is not known. Due to 
planned missions or unplanned changes, the 
formation may need to be reconfigured. Hybrid 
control architecture is used to address the 
reconfiguration issue. Additionally, sliding mode 
control (SMC) algorithm is explored to the 

formation control problems[5], and it provides 
several benefits. The drawback of this method is 
that there is a phenomenon called chattering 
which effects the applying of the SMC.  

In this paper, a new sliding mode control 
based on developed power reaching law (DPRL) 
method is derived to improve the accuracy and 
the robustness of control, and the proposed 
method also can eliminate chattering. C-W 
equations are used to model the follower satellite 
relative motion with respect to the leader. In the 
simulation section, the control results of the 
general power reaching law and the DPRL are 
compared. The simulation results show that the 
new control exhibits not only strong robustness 
to the unknown perturbation bounded, but also 
effectively eliminating chattering caused by 
high-frequency switch control. 

 
 

2. Sliding Mode Control 
  In this section, the theoretical basis for 
incorporating a multiple satellite formation 
control problem will be introduced[5], consider 
a nonlinear dynamical system of the form 

( , ) ( , ) ( )
( ) ( , )

x f x t G x t u t
y t h x t
= +
=

           (1) 

where ( ), ( )x t u t , and ( )y t are , 
and dimensional real function vectors, 

,n m
m
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( , ), ( , )f x t G x t  and  are analytic vector 
or matrix functions of the variables

( , )h x t
x and .  t

We define the relative degree vector asα , 
. The reference trajectory is represented 

by
mα ∈

( )y t , and the tracking error is defined as 
( ) ( ) ( )e t y t y t= − . As the definition of the 

relative degree, we can get  
( ) * *( ) ( , ) ( , ) ( )y t A x t B x t u tα = +      (2) 

  We shall design a controller with a sliding 
plane 
      

                           (3) 

( 1) ( 2)
1( ) ( ) c ( ) c ( )e e t e t e t dα α

ασ − −= + + ∫ t

where 1 2c ,c , cα  are strictly positive constants. 
The objective of sliding mode control is 

driving the states of the system to the sliding 
plane and keeping them on it. In order to get the 
control vector which can stabilize the system, we 
select a candidate Lyapunov function as: 

( ) ( ) 2TV e eσ σ= . The derivative of  is  V
( ) ( )TV eσ σ= e              (4) 

Substituting (2) into ( )eσ  gives 
( ) ( 1)

1
* *

( ) ( ) c ( ) c ( )

           ( , ) ( , ) ( )

e y t e t e t

A x t B x t u t

α α
ασ −= + +

− −
 

(5) 
 If is defined as ( )u t

    
( ) ( 1)

1
*

( ) ( ) c ( ) c ( )

          ( , )

u t y t e t e t

A x t

α α
α

−= + +

−
     (6) 

We can get  
*( ) ( ) ( , ) ( )e u t B x t u tσ = −         (7) 

Substituting (7) into (4) yields  
*

* * 1

( )( ( ) ( , ) ( ))
  ( ) ( , )( ( , ) ( ) ( ))

T

T

V e u t B x t u t
e B x t B x t u t u t

σ

σ −

= −

= −
 

(8) 
For the purpose of enabling the closed loop 
system to be globally asymptotically stable, 

 must be always negative. There are 
many ways to achieve this goal. One solution 
can take the following form 

( ) ( )T e eσ σ

* 1( ) ( , ) ( ) ( )bu t B x t u t u t−= +         (9) 
where 

*sgn( ( , ) ( )), 0, ( ) 0
( )

0,    ( ) 0b
B x t e e

u t
e

ρ σ ρ σ
σ

⎧ > ≠
= ⎨

=⎩
 

(10) 

ρ  is defined as a diagonal matrix, 

1 2diag( , , , )mρ ρ ρ ρ=         (11) 
and the vector sign function is a column of sign 
functions 

1 2sgn ( ) [sgn ( ) sgn ( )  sgn ( )]T
me e eσ σ σ σ e   (12) 

The main drawback of sliding mode control is 
that when an unstable high frequency plant 
mode is excited, the discontinuous control may 
exhibit a chattering phenomenon. The most 
common way to avoid chattering is to introduce 
a boundary layer on the sliding plane. In this 
paper, an improved SMC method based on 
power reaching law (PRL) algorithm with a 
saturation function is proposed to eliminate 
chattering. Within the boundary layer, we 
implement a linearized smooth transition 
between positive and negative, as the system 
state crosses the sliding plane. 
 
 
3. Satellite Formation Flying Control 

Design 
In this part, we will discuss the dynamic 

model of the formation flying and the DPRL 
algorithm. 

 
3.1 The dynamic model of the satellite 
formation flying 

We start by using the linearized C-W 
Equations to describe the legal relative motion 
between a leader and follower satellite 

2

2

2 3
2

x x

y y

z z

x y x u
y x u d

z z u d

ω ω
ω

ω

d− − = +

+ = +

+ = +

         (13) 

In equation (13), ,x y and are the follower 
satellite’s position relative to a leader satellite in 
a circular orbit:

z

x is in the radial direction from 
the Earth, is in leader satellite’s tangential 
velocity direction, and completes a right-hand 
coordinate system. The leader satellite mean 

angular velocity, around the Earth, is

y
z

3a
μω = , 

where μ is the Earth’s gravitational constant 
and is the semi-major axis (if the reference 
trajectory is a circular ,  is the radius) of the 
leader satellite’s elliptic orbit. 

a
a
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, , , , ,x y z x y zu u u d d d  are control variables and 
disturbances respectively.  
 
3.2 The power reaching law algorithm 

The sliding mode motion includes the 
reaching portion which describes the motion 
from any initial condition to the sliding plane 
and the portion sustaining the states staying on 
the sliding plane. According to the theory of 
sliding mode control, the reaching condition 
only can guarantee the states arriving at the 
sliding plane in a finite time without any 
information about the exact trajectory. However, 
the PRL can improve the dynamic quality of the 
reaching motion[4]. 

The PRL is defined as 
sgn( ),  0,1 0βσ λ σ σ λ β= − > > >  

(14) 
Integrating (14) yields 

1
0(1 )t 1β βσ λ β σ− = − − + −

       (15) 

The time that σ  takes to arrive at zero from 
0σ  is  

1
0 (1 )t βσ λ β−= −              (16) 

Hence, the state’s arriving at the sliding plane in 
a finite time is guaranteed. 

Next, we develop a more effective power 
reaching law method based on saturation 
function.  

  
s at( ) Ms at( )  

                 0,1 0,M 0

dtβσ λ σ σ σ

λ β

= − −

> > > >
∫      (17) 

where 
1 2 mdiag[ , , , ],λ λ λ λ

1 2

1 2 mdiag[ , , , ]β β βσ σ σ σ

1 2

mβ

e

i

sat ( ) [sat ( ) sat ( ) sat ( )]T
me e eσ σ σ σ  

The gains  , iλ β  and are chosen based on 
the bounds of the disturbance with little concern 
for the shape of the general disturbance function. 
The term of integration can reduce the shaking 
caused by the velocity inertia.  

iW

Substituting (5) into (17), we get the DPRL 
control function: 

* 1( ) ( , )( ( ) s at( )

          Ms at( ) )

u t B x t u t

dt

βλ σ σ

σ

−= +

+ ∫
     (18) 

where *( , )B x t I= ， I is identity matrix. We 
choose C-W equation as the model. Therefore, 

e represented as  (18) can b
 ( ) ( ) sat( )u t u t βλ σ σ= + + ∫Msat( )dtσ     (19) 

The saturation function is  
1        

1sat( )        
1     σ

Δ⎪− < −Δ⎩

σ
σ κσ σ κ

> Δ⎧
⎪ ≤ Δ =⎨       (20) 

Δ represents the boundary of the saturation. 
Because of the linearized feedback control in the 
boundary layer, the chattering phenomenon 
caused by the high-frequency switch control is 
eliminated and the system states can reach the 

3.

sliding plane in a finite time. 
 

3 The analysis of the stability 
Assuming ( ) Lu t ≤ , and considering (19), we 

can get the desired control input by selecting 
proper λ  and M .                  The 
control function can be written as 

( )u t = ( ) s at( ) M s at( )u t dtβλ σ σ σ+ + ∫  (21)  
where  

L

  1, 2, ,

M Li
⎪ >⎩

i
i m

βλ⎧ >⎪ Δ =⎨        (22) 

When σ  i us outside the bo ndary layer 
         sat( ) sgn( )σ σ=  
Substituting (21) into (4) yields: 

 

( ) ( ) ( )[ ( ) sgn( )

                     Msgn( )  ]

                ( )[Lsgn( ) sgn( )

                   Msgn( )  ]

     

T T

T

e e e u t

dt

e

dt

β

β

σ σ σ λ σ σ

σ

σ σ λ σ σ

σ

= −

−

≤ −

−

∫

∫
    (23) 

As 0, 0Wλ > > ， 0σ > , And λ，M is derived 
from (22), we get 

( )[Lsgn( ) sgn( )

          M sgn( )  ]<0

T e

dt

βσ λ σ σ

σ

−

− ∫
      (24) 

σ

then, ( ) ( ) 0T e eσ σ < . 
Within the boundary layer 

sat( )  σ κσ=  
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From (22), we have  
( ) ( ) ( )[ ( )

                    M  ]

T Te e e u t

dt

βσ

                0

σ σ λ σ κσ

κσ

= −

− ∫     (25) 

p system is globally 
asymptotically stable. 

3.

<
Thus, by using the developed power reaching 

law, the closed loo

 
4 Numerical Simulation 
A simulation of a follower satellite motion 

around a leader was developed to test the control 
methods’ effectiveness against the disturbances 
and the chattering. Since the leader satellite is 
assumed to remain in a circular orbit, the model 
consists of a reference trajectory which is 
defined by the C-W equations and an actual 
satellite plant based on (13). In this case, the 
representative disturbance is a sine wave with 
amplitude of 0.4 and a frequency of 0.6 rad/s. 
This disturbance acts in the , yx and z  axis of 
the follower satellite simultaneously, and was 
chosen to approximate the 2J  perturbation 
which a satellite in the given orbit would 
experience. The orbit parameters of the leader 
are 

n and 
the relative velocity are given as follows: 

a=7171 km, 30 , 0, 0i e i M= = Ω = = =  
The initial condition of the relative positio

o o

o o

o o( )=0,  ( )=0y t z t

( )=0 km,  ( )=0.5 km,  

( )=0.500 3km,  ( )=-1 ,  

x t y t

z t x t ω×  

We choose a sliding plane in the form  

e e t c e t c e t dtσ = + + ∫  

where c = . According to (22) 
0t

1c =

1 2( ) ( ) ( ) ( )
t

20.1, 0.01
0.5iβ = ，M 1.0, 4.0λ= = . 

Since the control  are similar for all three 
channels, on

s
ly the “ x ” channel will be shown in 

detail here. 
Fig.1 is a plot of xσ  vs. time for the sliding 

mode controller with general PRL and DPRL. 
As described earlier in this work, the xσ  using 
DPRL is much more smooth and without high 
frequency chattering. Fig. 2 depicts the error 
comparison between the general PRL and the 

developed one. The error of DPRL is much 
smaller and has a low oscillation frequency as 
the figure showing. Fig. 3 shows the comparison 
of the control input vs. time for two algorithms. 
As we can see, the DPRL provides an exact, 
continuous signal to the plant and eliminates the 
chattering effectively. 

 

 
 

Fig.1 sliding quantity xσ  
 

 
 

Fig.2 tracking error 
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Fig.3 the control input signal 
 
 

 
 

Fig.4 the practical trajectory 
 

Fig. 4 is a 3-D plot of the exact trajectory of 
the relative motion about the formation. It is 
apparent from the figure that the relative elliptic 
motion is kept very well after correcting the 
initial errors. 

Overall, it appears that the SMC with DPRL 
algorithm is an effective method of providing a 
continuous, smooth signal in the presence of 
bounded, unknown disturbances. 

 

4. Conclusion  
In this paper, the DPRL algorithm used in 

sliding mode control is derived and analyzed. 
The linearized C-W equations are introduced 
and used as the model of the satellite formation 
flying. In the simulation, the results of the 
proposed controllers applying the DPRL 
algorithm are compared with the controllers 
using the general PRL method. As shown in part 
3.4, the DPRL is very effective at reducing the 
sliding quantity to zero and keeping it there. And 
it also successfully eliminates the chattering 
caused by the high frequency switch control and 
compensates for bounded disturbances and 
uncertainties without their estimation. 
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