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Abstract: In multivariate interpolation problems, increase in both the number of independent variables of the
sought function and the number of nodes appearing in the data set causecomputational and mathematical diffi-
culties. It may be a better way to deal with less variate partitioned data sets instead of anN–dimensional data
set in a multivariate interpolation problem. New algorithms such as High Dimensional Model Representation
(HDMR), Generalized HDMR, Factorized HDMR, Hybrid HDMR are developed or rearranged for these types
of problems. Up to now, the efficiency of the methods in mathematical sense were discussed in several papers.
In this work, the efficiency of these methods in computational sense will be discussed. This investigation will
be done by using several numerical implementations.
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1 Introduction

If the values of a multivariate functionf(x1, ..., xN )
are given for only a finite number of points in the
space of its arguments and it is asked to determine an
analytical structure for the sought multivariate func-
tion, standard multivariate routines may become cum-
bersome as the dimensionality grows. This urges us
to use a divide–and–conquer algorithm which approx-
imates the function for the mentioned multivariate in-
terpolation problems. Hence, the given multivariate
data is partitioned into low-variate data and then an
analytical structure is determined with the aid of these
partitioned data.

For this purpose, two new data partitioning meth-
ods were developed by using the philosophy given
in High Dimensional Model Representation (HDMR)
method which was first proposed by I. M. Sobol in
1993[1]. The equation given by Sobol for this method
is as follows.

f(x1, ..., xN ) = f0 +
N

∑

i1=1

fi1(xi1) +

N
∑

i1,i2=1

i1<i2

fi1i2(xi1 , xi2) + · · · + f1...N (x1, ..., xN ) (1)

This expansion is a finite sum and is composed of a
constant term, univariate terms, bivariate terms and so
on. These are the HDMR components of a given mul-
tivariate function.

Then, several other new algorithms based on this
method were proposed in more comprehensive forms
for different types of engineering problems by H. Ra-
bitz, M. Demiralp and their groups[2-11].

A multivariate function can be given by its values
at a finite number of nodes of a hyperprismatic regu-
lar grid. These nodes can be represented byN tuples
which are the elements of a cartesian product of the
given individual sets of values for each independent
variable. High Dimensional Model Representation is
used to approximately partition this given multivariate
data into low–variate data[7].

On the other hand, data need not to be given
at all nodes of hyperprismatic regular grid. Instead,
it can be given at certain randomly chosen nodes.
Hence, certain level of incompleteness may be en-
countered in HDMR method for such data sets. This
time Generalized High Dimensional Model Represen-
tation (GHDMR), which is based on the HDMR ex-
pansion, is used as a data partitioning technique[8].

At this point, the nature of the given data, in other
words the nature of the sought function, and the con-
struction features of the data set affect the behavior
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of the interpolation problem and the structure of the
high dimensional model representation method. To
this end, HDMR or Generalized HDMR (GHDMR)
can be used to partition the multivariate data and to
determine an approximate analytical structure for the
sought function. These methods work well for the
sought functions having additive nature as a result of
the additive structure of the HDMR expansion. For
the sought functions having dominantly or entirely
multiplicative nature Factorized HDMR (FHDMR) is
used[9, 10]. Hybrid HDMR (HHDMR) method is
used when the sought function has intermediate na-
ture, that is, it has neither a dominantly additive nor a
dominantly multiplicative nature[11].

These abovementioned methods were developed
and published in several journals. In this work, we
will discuss CPU times spent for each algorithm in
different types of multivariate interpolation problems.
There exists a chapter related to the numerical test-
ing implementations for this investigation. The results
are obtained by using certain program codes (scripts)
written in MuPAD 4.0, Multi Processing Algebra Data
tool[12, 13]. This software is developed by the Mu-
PAD Research Group at the University of Paderborn
in Germany. MuPAD is a general purpose computer
algebra system for symbolic and numerical computa-
tions. Additionally, PERL Scripting Language, Prac-
tical Extraction and Report Language, is used for
making the given multivariate data amenable for Mu-
PAD program codes[14]. MuPAD program codes run
in a 20 digits precision environment. These results are
obtained on a PC of P-IV 2400MHz CPU speed and
512MB RAM.

2 Data Partitioning via HDMR
HDMR is constructed as an expansion for a given
multivariate function such that its components are or-
dered starting from a constant component (zeroth or-
der multivariance) and continuing in ascending multi-
variance, that is, univariate, bivariate, trivariate com-
ponents and so on. The main step of the algorithm
is to determine the right hand side components of the
HDMR expansion given in (1). To obtain the structure
of the constant term, the following operator is defined.

I0F (x1, . . . , xN ) ≡

b1
∫

a1

dx1W1(x1) · · ·

×

bN
∫

aN

dxNWN (xN )F (x1, . . . , xN ) (2)

Similarly, the following operator is defined to built
a way to determine the structure of the univariate

HDMR term of the given multivariate function

ImF (x1, . . . , xN ) ≡
∫ b1

a1

dx1W1(x1) · · ·

×
∫ bm−1

am−1

dxm−1Wm−1(xm−1)

×
∫ bm+1

am+1

dxm+1Wm+1(xm+1) · · ·

×
∫ bN

aN

dxNWN (xN )F (x1, . . . , xN ) (3)

where1 ≤ m ≤ N . The function,F (x1, . . . , xN ),
appearing in these two relations is an arbitrary square
integrable function. When the abovementioned oper-
ators are applied to the both sides of the HDMR ex-
pansion given in (1), the structures of the constant and
univariate terms are obtained[7]. Other operators can
be defined in a similar philosophy to determine the
structures of the other HDMR terms, such as bivariate
terms and so on.

Additionally, to uniquely determine these compo-
nents, the following vanishing conditions are used in
evaluation of the integrals appearing in the abovemen-
tioned operators.

∫ b1

a1

dx1 · · ·
∫ bN

aN

dxNW (x1, ..., xN )fi(xi) = 0 (4)

where1 ≤ i ≤ N . Since we need to perform a mul-
tivariate interpolation on a finite number of discrete
points we can extend the domain of HDMR variables
to the entire space without imposing any extra condi-
tions. Hence, we assume that the interval for each in-
dependent variable is(−∞,∞). It is assumed that,
the structure of the function,f(x1, . . . , xN ), is not
given analytically. Instead it is specified by values on
a finite number of points of the Euclidean space de-
fined by the independent variables,x1, . . . , xN . These
points are defined through a cartesian product. For
this definition, first the data of the variablexj is de-
fined as the following set

Dj ≡
{

ξ
(kj)
j

}kj=nj

kj=1
=

{

ξ
(1)
j , . . . , ξ

(nj)
j

}

(5)

where1 ≤ j ≤ N .The cartesian product mentioned
above can be constructed from these sets as follows.

D ≡ D1 ×D2 × · · · × DN (6)

The weight function appearing in the vanishing con-
ditions is assumed to be a product of univariate func-
tions each of which depends on a different indepen-
dent variable. The structure which needs to be cre-
ated through the interpolation must include the val-
ues of the functionf(x1, . . . , xN ) on the given points
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only. This structure can be obtained by formatting the
weight function for this purpose. In this sense the nec-
essary action is to define the weight function as a lin-
ear combination of several Dirac delta functions[15].
Hence, the following univariate weight functions are
selected.

Wj(xj) ≡
nj
∑

kj=1
α

(j)
kj

δ
(

xj − ξ
(kj)
j

)

,

xj ∈ [ aj , bj ] , 1 ≤ j ≤ N (7)

Using this weight function the operators mentioned
in this section can be applied to the both sides of the
HDMR expansion by the help of the vanishing con-
ditions and the given multivariate data is partitioned
into low-variate data sets. In this work we deal with
constant, univariate and at most bivariate terms.

After several integrations a constant value, uni-
variate partitioned data set and bivariate partitioned
data set are obtained. To this end, we have a con-
stant value,nm ordered pairs for the univariate func-
tion fm(xm) and nm1

nm2
ordered pairs for the bi-

variate function,fm1m2
(xm1

, xm2
)[7]. Next step is

to determine analytical structures for these partitioned
data sets and built the HDMR expansion of the sought
function by using these structures. This step will be
given in the fourth section of the paper. Next section
is about another data partitioning technique.

3 Data Partitioning via GHDMR

If a multivariate data is given for the determination
of a multivariate function, the location of data points
in hyperspace of the independent variables gains a
lot of importance. If they are located at the points
of a set which is constructed as a direct product of
univariate sets; High Dimensional Model Representa-
tion (HDMR) can be successfully used to partition the
data into less variate data. On the other hand HDMR
becomes unemployable when the data are random or
not given at all points of a grid which is constructed
via direct product of univariate meshes due to the in-
completeness of the data. Hence, for these cases, a
new high dimensional model representation method is
needed. Generalized High Dimensional Model Repre-
sentation (GHDMR) is used for this purpose. In this
method a general multivariate weight function is used
instead of a product type weight function. The al-
gorithm uses the HDMR components of this general
weight function. The steps of the method include first
the determination of the HDMR components of the
general multivariate weight function by using a prod-

uct type auxiliary weight function.

Ω(x1, ..., xN ) ≡
N
∏

j=1

Ωj(xj) (8)

Then, these components are employed in the formulae
to obtain the GHDMR components of the given mul-
tivariate function. In this way, the multivariate data is
partitioned into low variate data. Here, the constant
and the univariate terms of GHDMR expansion are
obtained to get an approximation. Similar operators
as given in the first section are used for this purpose.
This time, the integrations will be evaluated by also
using the HDMR components of the general weight
function under the auxiliary weight function. The fol-
lowing orthogonality conditions are employed in these
evaluations

b1
∫

a1

dx1 · · ·
∫ bN

aN

dxNΩ(x1, ..., xN )

× W (x1, ..., xN )fi(xi) = 0 (9)

where1 ≤ i ≤ N . As a result constant and uni-
variate GHDMR terms are obtained. Relation for the
univariate terms correspond to an integral equation
system whose unknowns are the univariate GHDMR
terms[8].

When we use this method to partition the mul-
tivariate random data, the following general weight
function is selected

W (x1, ..., xN ) ≡
m

∑

j=1

αjδ(x1 −x
(j)
1 ) · · · δ(xN −x

(j)
N )

(10)
whereαj parameters are used for making it possible
to give different importance to each individual datum.

Using this general weight function and the or-
thogonality conditions given in (9) when applying the
abovementioned operators to the HDMR expansion,
a constant value and a number of linear equations
whose unknowns are the univariate component values
at the given data points ofN dimensional space are
obtained. Final step of this algorithm is to determine
the unknowns of this equation set. This completes the
construction of the univariate components at the data
points[8].

At this point, approximate analytical structure
should be determined by using this partitioned data.
For this purpose, Lagrange interpolation formula will
be used. Next section is about this subject.

4 Interpolation
Partitioning the given multivariate data via HDMR
or GHDMR a table of pairs of data can be obtained
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instead of an analytical structure for the function
fm(xm). This table provides an opportunity to deter-
mine the functionfm(xm) under an assumed struc-
ture, that is, to interpolate the corresponding data.
By this way, multivariate interpolation, at least for
these functions, can be approximately reduced to a set
of univariate interpolations. To determine the over-
all structure of the function, an analytical structure
should be defined or a calculation rule should be im-
posed on the interpolation. If the function to be deter-
mined by HDMR or GHDMR is sufficiently smooth,
then the function can be represented with a multino-
mial of all independent variables over the continuous
region produced by the cartesian product of the related
intervals. For this purpose, first a multinomial repre-
sentation should be built forfm(xm).

pm(xm) =
nm
∑

km=1

Lkm
(xm)fm

(

ξ(km)
m

)

,

ξ(km)
m ∈ Dm, 1 ≤ m ≤ N (11)

Here Lkm
(xm)s are Lagrange coefficient polynomi-

als[16] which are independent of the structure of the
function. The structures of these polynomials are
given below

Lkm
(xm) ≡

nm
∏

j=1

j 6=km

(

xm − ξ
(j)
m

)

(

ξ
(km)
m − ξ

(j)
m

) ,

ξ(km)
m ∈ Dm, 1 ≤ km ≤ nm, 1 ≤ m ≤ N (12)

As Lagrange polynomials are constructed, univariate
functions given by the relation (11) are uniquely de-
termined within continous polynomial interpolation.
These functions can be considered as univariate com-
ponents of HDMR or GHDMR for the multivariate
function, f(x1, ..., xN ). The expansion formed by
the summation of these functions and the constant
term provides the following multinomial approxima-
tion which is called “Univariate Approximation”.

s1(x1, ..., xN ) = f0 +
N

∑

m=1

pm(xm) (13)

Same relations for the higher variate approximations
can be defined in a similar way.

5 Factorized HDMR
We have observed that the truncations of both HDMR
and GHDMR work well as long as the multivariate
function under consideration has additive nature. If it
is completely additive then data partitioning is exact,

otherwise a certain level of truncation error is encoun-
tered. Additivity is one end of the behavior of the
multivariate function. The other hand is multiplica-
tivity where all HDMR components contribute to the
function at similar orders. Therefore, truncation ap-
proximation fails to describe the multivariate function
under consideration. In those cases we need to formu-
late a different truncation approximation which some-
how takes all components of HDMR or GHDMR into
consideration. First step is to write this new equality
(FHDMR) for this method.

f(x1, ..., xN ) = r0





N
∏

i1=1

( 1 + ri1(xi1) )





×









N
∏

i1,i2=1

i1<i2

( 1 + ri1i2(xi1 , xi2) )









× · · · × [ ( 1 + r1...N (x1, ..., xN ) ) ] (14)

The right hand side components of the above relation
can be determined by making comparisons between
the right hand side of equation (1) and the additive
form of the right hand side in (14). To make compar-
isons, idempotent operators will be used as auxiliary
tools. These operators satisfy the following relations

I
(id)
j I

(id)
k ≡ I

(id)
k I

(id)
j ,

[

I
(id)
j

]2
≡ I

(id)
j (15)

wherej, k = 1, ..., N . Using these operators HDMR
and FHDMR expansions are replaced by the follow-
ing generalized ones

S(x1, ..., xN ) ≡ f0I +
N

∑

i1=1

fi1(xi1)I
(id)
i1

+ · · ·

R(x1, ..., xN ) ≡ r0





N
∏

i1=1

(

I + ri1(xi1)I
(id)
i1

)





× · · · (16)

These two entities represent the same multivariate
function. Hence, their right hand sides must match for
all idempotent operators. This permits us to determine
the constant term, the univariate terms and higher or-
der terms of the FHDMR expansion.

As a result, constant, univariate and bivariate
FHDMR terms are obtained in terms of HDMR or
GHDMR terms as follows.

r0 = f0

ri1(xi1)=
fi1(xi1)

f0

ri1i2(xi1 , xi2) =
f0fi1i2(xi1 , xi2) − fi1(xi1)fi2(xi2)

(f0 + fi1(xi1)) (f0 + fi2(xi2))

(17)
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6 Hybrid HDMR
In most cases the given multivariate data and the
sought multivariate function have neither purely ad-
ditive nor purely multiplicative nature. They have a
hybrid nature. So, a new method is used to obtain bet-
ter results and it is called Hybrid High Dimensional
Model Representation (HHDMR). This new expan-
sion includes both the HDMR (or GHDMR) and the
FHDMR expansions through a hybridity parameter,γ.

f(x1, ..., xN ) = γ



f0 +
N

∑

i1=1

fi1(xi1) + · · ·





+(1 − γ)



r0





N
∏

i1=1

( 1 + ri1(xi1) )



 × · · ·



 (18)

Using the equation given in (18) an HHDMR approx-
imant can be defined as follows by using the HDMR
and the FHDMR approximants

hjk(x1, ..., xN ; γ) ≡ γsj(x1, ..., xN )

+(1 − γ)πk(x1, ..., xN ), 0 ≤ j, k ≤ N (19)

wheresj(x1, ..., xN ) stands for thej-th HDMR ap-
proximant andπk(x1, ..., xN ) stands for thek-th
FHDMR approximant which is a truncated product in-
cluding at mostk-variate factors.

The most important step here is to determine the
hybridity parameter,γ. For this purpose, a functional
is defined as

F (γ) ≡ ||forg − fHHDMR(γ)||2 (20)

whereforg andfHHDMR stand for the original func-
tion and the function obtained from the HHDMR ex-
pansion respectively. We need to obtain theγ value
that minimizes the value of this norm. This minimiza-
tion criterion can be written as

∂F

∂γ
= 0 (21)

Using this criterion best value for that parameter can
be obtained[11]. By this way the best representation
for the sought multivariate function can be determined
via Hybrid HDMR.

7 Error Analysis
According to the abovementioned methods, HDMR or
GHDMR, FHDMR and HHDMR, several represen-
tations can be obtained approximately by using the
constant, univariate and bivariate terms of the men-
tioned expansions. For obtaining these several repre-
sentations there exist questions, that is, how to find the

best expansion for the sought multivariate function or
whether the obtained representations are or are not the
acceptable solutions for the given engineering prob-
lems. For this purpose, the following relative norm

N =
||forg − fnew||

||forg||
(22)

will be evaluated. Here,fnew stands for the multivari-
ate function obtained via a high dimensional model
representation expansion.

The minimum norm value obtained by using this
relation through all the evaluated norm values will
show the best representation for the sought multivari-
ate function. This result is assumed to be the best rep-
resentation for the multivariate function.

8 Numerical Implementations

In this section, the numerical implementations are
classified into two main parts. The first part includes
the examples in which the HDMR method is used as
a data partitioning technique. In this part FHDMR
and HHDMR algorithms are used the partitioned data
obtained through HDMR. In the second part, the ex-
amples are constructed by using GHDMR method.
FHDMR and HHDMR algorithms are used the par-
titioned data which are obtained through the GHDMR
method.

The results are obtained by using MuPAD 4.0.
The CPU time results for each implementation are
evaluated by using “time()” function which returns the
total CPU time in milliseconds that was spent by the
current MuPAD process. Only the relative error val-
ues and CPU times spent for the evaluations are given
in this work.

It is assumed that the following(N + 1)–tuples
are taken as data to describe a multivariate function
f(x1, ..., xN )

dj ≡
(

x
(j)
1 , ..., x

(j)
N , ϕj

)

, 1 ≤ j ≤ m (23)

where ϕj is the value off(x1, ..., xN ), the sought
function, at the point described by the firstN compo-
nents ofdj in the N–dimensional space we are con-
cerned. That is,

ϕj ≡ f(x
(j)
1 , ..., x

(j)
N ), 1 ≤ j ≤ m (24)

To construct the information for the data set which
are the values of the sought multivariate function at
the nodes of the grid, analytical structures of known
multivariate functions are used.
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8.1 HDMR Based Implementations
The first example considered here is a multivariate
function which is completely additivite, that is, the
sum of univariate functions as follows.

f(x1, . . . , x10) =
10
∑

i=1

aixi, ai = 2i − 1 (25)

This function has10 independent variables and it is
assumed that the given data set has16384 nodes in
it. The relative error value obtained for the univariate
HDMR approximant and the CPU time spent for this
approximation are

Ns1
= 2.84 × 10−25, ts1

= 4.48 mins (26)

respectively. Because the programming environment
has20 decimal digit accuracy, this result can be as-
sumed to be zero and it means that the representation
obtained is exact for the multivariate function dealt
with.

In the second example, the selected multivari-
ate function has five independent variables where the
function is of purely multiplicative nature

f(x1, x2, x3, x4, x5) = x1 x2 x3 x4 x5 (27)

and there are640 nodes in the given hyperprismatic
regular grid. The results of the relative error analysis
and the CPU times spent for each algorithm are ob-
tained as follows

Ns1
= 3.16 × 10−1, ts1

= 1.56 secs

Ns2
= 8.66 × 10−2, ts2

= 6.44 secs

Nπ1
= 8.37 × 10−25, tπ1

= 6.47 secs (28)

where s1, s2, and π1 correspond to the univariate
HDMR, bivariate HDMR and univariate FHDMR ap-
proximants.

The analytical structure of the multivariate func-
tion is defined as follows as the third example with six
independent variables.

f(x1, . . . , x6) = (x1 + x2 + x3 + x4 + x5 + x6)
5

(29)
In this example the given data set is constructed by
using 6400 nodes. The relative error values and the
CPU times are obtained as follows.

Ns1
= 7.30 × 10−2, ts1

= 9.32 secs

Ns2
= 7.43 × 10−3, ts2

= 22.79 secs

Nπ1
= 1.92 × 10−2, tπ1

= 9.34 secs

Nπ2
= 1.14 × 10−3, tπ2

= 22.93 secs

Nh11
= 5.13 × 10−3, th11

= 19.37 secs

Nh22
= 6.06 × 10−4, th22

= 391.15 secs (30)

8.2 GHDMR Based Implementations
In the following example we know the nodes of the
mesh and the values of the sought function at the
nodes of the given mesh. Hence, the domains for the
independent variables are known. For the following
numerical implementation there are4976640 nodes in
the mesh.100 nodes from this mesh are selected ran-
domly. Using these nodes and the values of the fol-
lowing selected multivariate function at these nodes a
multivariate data set is constructed.

f(x1, ..., x10) =
10
∑

i=1

ixi (31)

The relative error value and the CPU time spent for
this generalized form HDMR method are obtained as
follows

Ns̄1
= 1.76 × 10−25, ts̄1

= 7.69 secs (32)

wheres̄1 corresponds to the univariate GHDMR ap-
proximant.

The last example is given to discuss the perfor-
mance results of GHDMR, FHDMR and HHDMR
methods for the following multivariate interpolation
problem. The analytical structure of the sought func-
tion is selected as

f(x1, x2, x3, x4, x5) =
5

∏

i=1

(1 + 4xi) (33)

where the problem has100 nodes. It has both addi-
tive and multiplicative features. Hence, it is expected
that the HHDMR approximants will give better results
than GHDMR and FHDMR. To make this comparison
the following relative error values of all approximants
obtained through GHDMR, FHDMR and HHDMR
are calculated and needed CPU times for these cal-
culations are measured.

Ns̄1
= 1.84 × 10−1, ts̄1

= 2.10 secs

Nπ1
= 1.03 × 10−1, tπ1

= 2.16 secs

Nh11
= 7.52 × 10−2, th11

= 8.25 secs (34)

9 Concluding Remarks
In this work, the basic idea is to partition the given
data to less variate data and then to interpolate them
individually to fit an analytical structure to the mul-
tivariate function to be determined. The elements of
data set are assumed to be given at the nodes of a hy-
perprismatic grid. Certain nodes may be missing to
locate data or entire nodes are used to specify the val-
ues of the multivariate function under consideration.
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If data is given at all nodes of a hyperprismatic grid
then classical HDMR can be used for partitioning. On
the other hand, GHDMR should be used instead of
HDMR when the data has no datum for certain nodes.
The nature of the sought multivariate function also af-
fects the method in use. Since the HDMR expansion
has an additive structure, these two methods seem to
be effective for additive type functions. As the sought
function has not purely additive but also multiplica-
tive nature, the obtained representation via HDMR or
GHDMR for the sought function gets worse. Hence,
certain new methods are needed to determine better
representations for the functions having multiplicative
or intermediate natures. For this purpose, FHDMR
and HHDMR methods are used.

As a result, we have HDMR, GHDMR, FHDMR
and HHDMR methods to deal with the functions
whose nature is additive or multiplicative or interme-
diate type.

When the results given in the previous section
are examined carefully depending on the nature of
the sought multivariate function the reults get better
while we use the method that best fits. However, when
the number of nodes or the number of HDMR terms
taken into consideration increase, more time periods
are needed to obtain the better results. This brings
much more CPU time need for the mentioned algo-
rithms.

This means that if you want the best solution for
your problem you have to wait much more for the re-
sults. On the other hand, if a result obtained by using
an approximant having less variate terms is sufficient
for the given problem, then you may spend less CPU
time for your work.
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