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Abstract: The paper deals with a recently proposed approach to combining classifiers by means of fuzzy ag-
gregation. The approach relies on the quasi-Sugeno integral and on thet-conorm integral as a generalization of
the Choquet and Sugeno integral, which have been used for combining classifiers so far. New theoretical devel-
opment is presented, in particular a proposition concerning theλ measures used in the quasi-Sugeno integral,
and the approach is elaborated specifically for support vector machines. Finally, experience is reported that was
gained when using the approach to combine support vector machines in a neurophysiologic application.

Key–Words:Support vector machines, Fuzzy aggregation,t-conorm integral, Quasi-Sugeno integral

1 Introduction

Classification, i.e., assigning objects to predefined
classes based on data about those objects, is a ubiqui-
tous task, encountered in nearly any application area.
Traditionally, dealing with data was the domain of
statistics, therefore the earliest classification methods
originated there, e.g., the Bayesian classifier, linear
and quadratic discriminant analysis, or nearest neigh-
bour methods [8, 9]. Since the advent of computers,
the classification task has also been studied in connec-
tion with the emerging paradigm ofmachine learning.
Most successful among methods developed in that
area have been various kinds of classification trees
and neural networks [1, 9, 14]. Since the 1990s, the
spectrum of classification methods has been comple-
mented withsupport vector machines (SVMs), which
attempt to combine machine learning with the statisti-
cal approach [2, 15].

Besides looking for new kinds of classifiers, the
efforts to improve classification followed also the way
of combiningthe results of a whole set of classifiers.
Particular attention has been paid to combining sets
of classifiers of the same type, differing only in some
tunable parameter and / or the data used for their train-
ing, which are calledensembles of classifiers. To this
end, various approaches can be employed, from sim-
ple arithmetic rules, through using second level clas-
sifiers and boosting, to sophisticated methods such as
decision templates, Dempster-Shafer fusion, or fuzzy
integral [10, 12]. From the various kinds of fuzzy inte-
gral,Choquet integralandSugeno integralhave been

used for combining classifiers so far.
Both the Choquet and the Sugeno integral are

only particular cases oft-conorm integrals, the lat-
ter is at the same time a particular case ofquasi-
Sugeno integrals[7]. This fact incited research into
an approach to combining classifiers based on quasi-
Sugeno integrals. First results of that research have
been reported in [17]. In the present paper, the ap-
proach is further developed, and elaborated specifi-
cally for support vector machines.

The following section recalls thet-conorm inte-
grals as a general means for fuzzy aggregation and
quasi-Sugeno integrals as their particular class. The
key section of the paper is Section 3, in which the
proposed approach to combining SVMs is described.
Finally in Section 4, experience from a neurophysio-
logic application is reported.

2 Fuzzy Aggregation Based on thet-
conorm Integral

Like traditional integrals, also fuzzy integrals aggre-
gate all function values of a function into one sin-
gle characteristics. However, they aggregate the in-
dividual function values using a more general kind
of measures – fuzzy measures. The first integral of
that kind was proposed already more than a decade
before the advent of the fuzzy set theory by G. Cho-
quet [3]. Within the framework of the fuzzy set the-
ory, a number of fuzzy integrals have been elaborated,
most frequently used being the one proposed 1974
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by M. Sugeno [16]. In the late 1980s, T. Murofushi
introduced a very broad class of t-conorm integrals,
which covered almost all existing fuzzy integrals and
has several important subclasses, such as Archime-
dean t-conorm integrals or quasi-Sugeno integrals, a
generalization of Sugeno integrals [6, 7].

The present section recalls the basic concepts per-
taining to the t-conorm and quasi-Sugeno integrals, as
well as their relationship to the Choquet and Sugeno
integrals. Since the concern of this paper is combining
classifiers, only integration over finite sets is treated
here.

Definition 1 Let λ > −1, Ω be a nonempty set,A a
set of subsets ofΩ, andµ : A → [0,∞) a mapping
such that:
(i) ∅,Ω ∈ A;
(ii) µ(∅) = 0;
(iii) (∀A,B ∈ A) A ⊂ B ⇒ µ(A) ≤ µ(A).
Then

a) µ is called afuzzy measureon (Ω,A);

b) if A is the powersetP(Ω) of Ω andµ fulfils

(∀A,B) A ∩B = ∅ ⇒ µ(A ∪B) =
= µ(A) + µ(B) + λµ(A)µ(B), (1)

it is calledλ measure onΩ.

Observe that aλ measure withλ = 0 andµ(Ω) =
1 is a probability on(Ω,P(Ω)).

Definition 2 Let 4, ⊥ and ⊥ be continuous t-
conorms such that each of them is either Archimedean
or the standard conorm∨ (i.e., x ∨ y = max(x, y)),
and� : [0, 1]2 → [0, 1] a binary operation such that:
(i) � is nondecreasing in both arguments;
(ii) � is continuous on(0, 1]2;
(iii) (∀a, x ∈ [0, 1]) a � x = 0 iff a = 0 or x = 0;
(iv) (∀a, x, y ∈ [0, 1]) x⊥y < 1 ⇒ a � (x⊥y) =

(a � x)⊥(a � y);
(v) (∀a, b, x ∈ [0, 1]) a4b < 1 ⇒ (a4b) � x =

(a � x)⊥(b � x).
ThenF = (4,⊥,⊥, �) is called t-conorm system
for integrationwith integrand space([0, 1],4), mea-
sure space([0, 1],⊥), integral space([0, 1],⊥), and
quasiproduct�. If all 4, ⊥ and⊥ are Archimedean,
F is calledArchimedean.

Definition 3 Letµ be a fuzzy measure on(Ω,A) with
Ω finite andµ(Ω) = 1, andF = (4,⊥,⊥, �) be a
t-conorm system for integration. Let furtherf : Ω →
[0, 1], a1, . . . , an ∈ [0, 1] be such thata1 ≤ · · · ≤ an

andf(Ω) = {a1, . . . , an}. For i = 1, . . . , n, denote
Di = f−1(ai), Ai =

⋃n
j=i Dj . Then

a) thefuzzy t-conorm integralof f based onF with
respect toµ is defined by

(F)
∫

f � dµ = ⊥n
i=1(ai −4 ai−1) � µ(Ai), (2)

where a0 = 0 and −4 denotes the pseudo-
difference with respect to4, i.e.,

(∀a, b ∈ [0, 1]) a−4 b = inf{c : b4c ≥ a};

b) if in particular, F = (∨,∨,∨, �), where� in
addition to satisfying the conditions (i)–(v) from
Definition 2 is a t-norm,(F)

∫
f � dµ is called

quasi-Sugeno integral.

Using the definitions of Sugeno and Choquet in-
tegral (cf. [7]), the following proposition is easy to
prove:

Proposition 4 Let µ, F , f , and ai, Ai for i =
1, . . . , n have the same meaning as in Definition 3.
Denote∧ the standard norm (i.e.,x∧y = min(x, y)),
and ∨Ł the Łukasiewicz conorm (i.e.,x ∨Ł y =
min(1, x + y)). Then

1. if in particular,F = (∨,∨,∨,∧),

(F)
∫

f � dµ =
n∨

i=1

(ai ∧ µ(Ai)), (3)

which is the definition of
∫
S fdµ, theSugeno in-

tegralof f with respect toµ;

2. if in particular,F = (∨Ł,∨Ł,∨Ł, ·) with · denot-
ing the ordinary multiplication,

(F)
∫

f � dµ =
n∑

i=1

(ai − ai−1) · µ(Ai), (4)

which is one of equivalent definitions of
∫
C fdµ,

theChoquet integralof f with respect toµ.

3 Using Quasi-Sugeno Integral to
Combine SVMs

To elaborate the use of t-conorm integral and quasi-
Sugeno integral for combining support vector ma-
chines entails, according to Definition 3, the following
steps:

1. to determine the setsΩ andA;

2. to define a fuzzy measure on(Ω,A);

3. to choose a t-conorm system on which the inte-
gral should be based;
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4. to define the integrand.

In the present section, those four steps will be
individually dealt with. The first and third of them
actually do not depend on the fact that specifically
SVMs have been chosen as classifiers. Therefore, it
is possible to make use of recently published results
[17], which concern combing classifiers by means of
t-conorm integral in general.

1. SetsΩ andA. Because the objective of the
integration is combining support vector machines, a
natural choice forΩ is the set of considered SVMs:
Ω = {ς1, . . . , ςn}, whereς1, . . . , ςn : X → {1,−1},
andX is some Euclidian space. For finiteΩ, it is com-
mon to define the domain of a fuzzy measure asP(Ω)
since due to the finiteness ofΩ, there is no problem
in obtaining any of the subsets ofΩ. Moreover, the
domainP(Ω) is required if aλ measure is consid-
ered, according to Definition 1. Hence, our choice is
A = P(Ω).

2. Fuzzy measure.To define a general fuzzy mea-
sureµ, valuesµ(A) for all the2n − 1 nonempty sets
A ⊂ Ω are needed. On the other hand ifµ is restricted
to be aλ measure, then then valuesµ(ς1), . . . , µ(ςn)
are sufficient, as the following proposition shows.

Proposition 5 Let Ω = {ς1, . . . , ςn}. Let further
c1, . . . , cn ∈ [0, 1] be such thatc1 + · · · + cn > 0.
Then:

a) There existλ > −1 and aλ measureµ onΩ such
that

µ(ςi) = ci for i = 1, . . . , n. (5)

b) If
∑n

i=1 ci = 1, there exists a probabilityµ on
(Ω,P(Ω)) fulfilling (5).

c) The conditionmaxi=1,...,n ci = 1 is equivalent
to eachλ measureµ on Ω fulfilling (5) being a
probability with a singleton support.

Proof
a) Let maxi=1,...,n ci < 1 and

∑n
i=1 ci 6= 1, the re-

maining cases will be dealt with separately in b) and
c). DenoteD = (−1, 0) ∪ (0,+∞) and define the
functiongΩ : D → < as follows:

(∀x ∈ D) gΩ(x) =
1
x

(
n∏

i=1

(1 + xci)− 1

)
− 1 =

=
n∑

i=1

ci+x
n−1∑
i1=1

n∑
i2=i1+1

ci1ci2+· · ·+xn−1c1c2 · · · cn−1.

(6)

Then gΩ is continuous on(−1, 0) ∪ (0,+∞) and
limx→0 gΩ(x) =

∑n
i=1 ci−1. Consequently, the con-

dition
∑n

i=1 ci < 1 implieslimx→0 gΩ(x) < 0, which
together withlimx→+∞ gΩ(x) = +∞ guarantees the
existence of a zero point ofgΩ in (0,+∞), whereas∑n

i=1 ci > 1 implies limx→0 gΩ(x) > 0, which to-
gether withlimx→−1 gΩ(x) = −

∏n
i=1(1 − ci) < 0

guarantees the existence of a zero point ofgΩ in
(−1, 0). Let λ be such a point, and define:

µ(∅) = 0 & (∀A = {ςi1 , . . . , ςik
} ∈ P(Ω))

µ(A) =
1
λ

 k∏
j=1

(1 + λcij )− 1

 . (7)

For A = {ςi}, i = 1, . . . , n, this directly yields
(5). Combining (7) with (6) and with the fact thatλ
is a zero point ofgΩ leads toµ(Ω) = 1. To finish the
proof of (1), consider disjoint setsA = {ςi1 , . . . , ςik}
andB = {ςik+1

, . . . , ςi`}. Then according to (7),

µ(A ∪B) =
1
λ

(
∏̀
j=1

(1 + λcij )− 1) =

=
1
λ

[(
k∏

j=1

(1 + λcij
)− 1)(

∏̀
j=k+1

(1 + λcij
)− 1)+

+
k∏

j=1

(1 + λcij
) +

∏̀
j=k+1

(1 + λcij
)− 2] =

=
1
λ

(
k∏

j=1

(1 + λcij
)− 1) +

1
λ

(
∏̀

j=k+1

(1 + λcij
)− 1)+

+ λ
1
λ

(
k∏

j=1

(1 + λcij
)− 1)

1
λ

(
∏̀

j=k+1

(1 + λcij
)− 1) =

= µ(A) + µ(B) + λµ(A)µ(B). (8)

b) Since
∑n

i=1 ci = 1, (c1, . . . , cn) is the vector of
densities for some probabilityµ on (Ω,P(Ω)). Then
the fact thatµ is a probability entails the validity of
µ(Ω) = 1 and of(∀A,B ⊂ Ω) A ∩B = ∅ → µ(A ∪
B) = µ(A) + µ(B), whereas the fact thatc1, . . . , cn
are densities implies the validity of (5).
c) If µ is a probability fulfilling (5) with a singleton
support{ςiO}, thenciO = 1 = maxi=1,...,n ci = 1.
On the other hand, let the conditionmaxi=1,...,n ci =
1 andµ be aλ measureµ on Ω fulfilling (5). Denote
ciO = maxi=1,...,n ci. The existence ofi 6= i0 such
thatci > 0 would entail the contradiction

1 = µ(Ω) ≥ µ({ςiO
, ςi}) =

= µ({ςiO
}) + µ({ςi}) + λµ({ςiO

})µ({ςi}) =
= 1 + µ({ςi})(1 + λ) > 1. (9)

Consequently, no suchi exists, butci = 0 for each
i 6= i0. Then due to (1) and (5),

µ(A) =

{
1 if ςiO

∈ A,

0 if ςiO
6∈ A,

(10)
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which implies{ςiO} being the support ofµ. To prove
that µ is actually a probability, consider disjoint sets
A,B ⊂ Ω. Because at least one ofA, B does not
containςiO , (10) yieldsλµ(A)µ(B) = 0, which in
connection with (1) leads toµ(A∪B) = µ(A)+µ(B).

�
Using the above proposition and its proof, a

λ measure can be completely defined from the values
c1, . . . , cn. Nevertheless, it is still necessary to define
those values. Two principally different approaches are
possible:
(i) The valueci should measure some property of a

particular classifierςi, i = 1, . . . , n. From the
point of view of classification, the most desir-
able property of a classifier is itsgeneralization
capability, i.e., the capability to correctly clas-
sify unseen data. There are several possibilities
how to measure that property [8], the most com-
monly used being theaccuracy 1

r card{k : xk

is correctly classified}, which is an estimate of
the probability of correct classification based on
a random sample(x1, . . . ,xr) of unseen data.

(ii) The valueci should measure some property of a
particular class of classifiers to whichςi belongs,
such as the class of all SVMs based on a poly-
nomial kernel of a particular orderd, or the class
of all SVMs based on an RBF kernel with a par-
ticular value ofσ. Similarly to (i), the main con-
cern is in the mean generalization capability of
classifiers belonging to the class. It is typically
measured using the method calledk-fold cross-
validation: The available data are divided intok
parts and each part is used as a random sample to
compute the accuracy of an SVM constructed us-
ing the remainingk− 1 parts. The average accu-
racy of allk classifiers then serves as a measure
of the mean generalization capability of SVMs
from the class.
To combine at least two SVMs fromΩ, µ must

not have a singleton support. Then according to Pro-
postion 5,ci 6= 1 for i = 1, . . . , n. However, that
condition can not be guaranteed if accuracies or their
averages are used asci because they can happen to
take the value 1. A simple remedy is to first multiply
all accuracies with the same constantγ ∈ (0, 1). In
practical applications of the presented approach, the
valueγ = 1

2 has been used, similarly to [18].
3. T-conorm system.For the choice of a t-conorm

system, the following observations are useful:

• According to [7], using an Archimedean system
is equivalent to using the Choquet integral with
a transformed measure and a transformed inte-
grand.

• Due to (2),� has to be nonconstant with respect
to nonzero values of the second argument if the
fuzzy measureµ should be able to have any in-
fluence on the integral.

• If integrating with respect to a fuzzy measure is
viewed as a generalization of integrating with re-
spect to a probability measure, the fuzzy integral
should be viewed as the mean value of the inte-
grand with respect to the fuzzy measure. To this
end, it is necessary that the integral space be the
same as the integrand space, hence⊥ = 4.

These observation suggest to restrict attention
to non-Archimedean systemsF = (4,⊥,4, �), in
which � is nonconstant with respect to nonzero val-
ues of the second argument. A recent publication [17]
has proven that then4 = ⊥ = ⊥ = ∨. A promi-
nent example of such t-conorm systems are systems
used for quasi-Sugeno integrals, in which� is in addi-
tion a t-norm. In that context, it is important that for
(∨,∨,∨, �), where� is a t-norm, necessary and suf-
ficient to be a t-conorm system for integration is ful-
filling the requirements (ii) and (iii) from Definition 2
[17].

The most easy way to find a comprehensive
contingent of t-norms suitable to be used as� in
quasi-Sugeno integrals is to investigate simultane-
ously wholefamilies of t-norms, the individual mem-
bers of which differ from each other through the
value of some particular parameter. Many such fam-
ilies have been listed in [11]. For this paper, the
Acźel-Alsina family, (∧ε

AA)ε∈(0,∞), the Dombi fam-
ily (∧ε

D)ε∈(0,∞) and theFrank family (∧ε
F)ε∈(0,∞)

have been selected, all of which have a parameter
ε ∈ (0,∞). The following definitions are needed
only for x, y ∈ (0, 1) because for the remaining pairs
(x, y), any t-norm� fulfils 0 � x = x � 0 = 0 and
1 � x = x � 1 = x:

x ∧ε
AA y = e−

ε
√

(− log x)ε+(− log y)ε
, (11)

x ∧ε
D y =

1

1 + ε

√(
1−x

x

)
+
(

1−y
y

) , (12)

x ∧ε
F y =

{
logε

(
1 + (εx−1)(εy−1)

ε−1

)
if ε 6= 1,

xy if ε = 1.
(13)

It is easy to prove that those three families fulfil
the requirements (ii) and (iii) concerning� in Defini-
tion 2. In addition, the propertylimε→∞ x ∧ε

AA y =
limε→∞ x ∧ε

D y = limε→0 = x ∧ y has been proven
in [11].

4. Integrand.Although SVMs have the dichoto-
mous output 1 or -1, their construction based on train-
ing data(x1, y1), . . . , (xp, yp) actually employs the
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graded information
∑

k∈S αkykκ(xk,x)+ b̂, which is
the normal coordinate of the classified point with re-
spect to the central hyperplane of the margin between
the two classes [2, 15]. Since that value can theoret-
ically equal any real number, a nondecreasing trans-
formationf1 : < → (0, 1) has to be applied to it for
an integrand representing the membership ofx in the
class with a positive value of that coordinate, and a
nonincreasing transformationf2 : < → (0, 1) has to
be applied to it for an integrand representing the mem-
bership ofx in the class with a negative value of that
coordinate. Our implementation of the presented ap-
proach uses the transformationsf1(t) = tanh(at) for
t ≥ 0, f2(t) = − tanh(at) for t ≤ 0,wherea > 0 is a
constant, andf1, f2 = 0 else. To fix the value ofa, we
have added the requirementf1(1) = f2(−1) = 0.95,
which in the context of SVMs concerns exactly the
support vectors [2, 15].

4 A Neurophysiologic Application

The proposed method of classifier combining has al-
ready been used in two real-world applications, the
first of which will now be very briefly recalled. It
is a neurophysiologic application concerning research
into the detection of driver’s somnolence, which has
been performed in collaboration of neurophysiologists
and transportation scientists at the Czech Technical
University Prague [4]. The ultimate objective of that
research is to provide a knowledge base and detection
algorithms for a system able to detect driver’s somno-
lence, a cause of severe traffic accidents.

The used data consist of 762 pairs of spectra
of EEG segments with mean duration approx 3.5 s
recorded for 24 probands with acute sleep depriva-
tion, using standard 19-channel EEG measurement.
Each pair contains spectra for signals from channels
T3 and O1, which have been considered most infor-
mative by the participating neurophysiologists. The
spectra have been obtained from the EEG signals by
means of the Burg filter of order 20, and contain spec-
tral densities for frequencies 0-30 Hz by step 1 Hz.
Each of the included EEG segments corresponds to
one of the following states of the proband: relaxed
vigilance, mental activity, in particular solving a part
of the Raven test, andsomnolence. Though this most
naturally leads to a 3-class classification, most impor-
tant from the point of view of the ultimate objective
of the research is the entailed 2-class classification be-
tween somnolence and the other states. Hence,yk = 1
for a segment corresponding to somnolence, whereas
yk = −1 for a segment corresponding to vigilance or
mental activity. The correct assignment of states to

the 762 available segments was provided by an expert
neurophysiologist, based on a visual inspection of the
segments and their spectra.

The quality of the combined classifiers was tes-
ted, using 10-fold cross validation, for 63 different
t-norms in the quasi-Sugeno integral, taken from the
Aczél-Alsina, Dombi and Frank families. The results
confirm the extreme difficulty of this real-world clas-
sification task: the mean error rate was approximately
40% and varied substantially between the individual
test sets of the cross validation – for some of them
it was only slightly over 10%, whereas for others it
was worse than that of a random classifier. From
the point of view of the topic of this paper, i.e., us-
ing the quasi-Sugeno integral to combine classifiers,
very important is that the results are nearly insensi-
tive to the choice of the t-norm in the integral, more
precisely to the choice of the value of the parameter
ε in the three families. The lowest error rates were
achieved withε = 1.3 − 1.6 for the Acźel-Alsina
family, ε = 0.5 − 0.8 for the Dombi family, and
ε = 0.03 − 0.25 for the Frank family, but in all those
cases, the relative improvement compared to the tra-
ditional Sugeno integral is only about 1%. For illus-
tration, Figure 1 shows the error rate for the Dombi
family.

Figure 1: Dependence of the error rate onε for the
Dombi family (solid line: mean, dotted lines: mean±
standard deviation)

5 Conclusions

This paper continues a research into an approach to
combining classifiers based on thet-conorm integral,
in particular on the quasi-Sugeno integral, the first re-
sults of which have been recently published in [17].
That approach has been further theoretically devel-
oped, and elaborated specifically for support vector
machines. The result of its theoretical development
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is Propostion 5, which analyses situations that can oc-
cur when aλ measure is constructed. Such a propo-
sition has not been available in [17]. As far as the
elaboration for support vector machines is concerned,
a crucial role plays the choice of integrand as a trans-
formation of the normal coordinate with respect to
the central hyperplane of a margin. The experience
from a first real-world application has most impor-
tantly brought the observation that the result of the ap-
proach is nearly insensitive to the choice of thet-norm
in the quasi-Sugeno integral. It is worth mentioning
that a similar observation has been done also in the
case of a more recent application of the approach to
data described in [13] and concerning catalytic mate-
rials, and in the case of the well known benchmark of
Fisher iris data [5].

Acknowledgments

The research reported in this paper has been supported
by the grant No. ME701, ”Building Neuroinformation
Bases, and Extracting Knowledge from them”, of the
Czech Ministry for Education, and partially supported
by the Institutional Research Plan AVOZ10300504.

References

[1] L. Breiman, J.H. Friedman, R.A. Olshen, and
C.J. Stone.Classification and Regression Trees.
Wadsworth, Belmont, 1984.

[2] C.J.C. Burges. A tutorial on support vector ma-
chines for pattern recognition.Knowledge Dis-
ocvery and Data Mining, 2:121–167, 1998.

[3] G. Choquet. Theory of capacities.Annales de
l’Institut Fourier, 5:131–296, 1954.

[4] J. Faber, M. Nov́ak, P. Svoboda, and V. Tatari-
nov. Electrical brain wave analysis during hyp-
nagogium. Neural Network World, 13:41–54,
2003.

[5] R.A. Fisher. The use of multiple measurements
in taxonomic problems. Annals of Eugenics,
7:179–188, 1936.

[6] M. Grabisch, T. Murofushi, and M. Sugeno.
Fuzzy measure of fuzzy events defined by fuzzy
integrals. Fuzzy Sets and Systems, 50:293–313,
1992.

[7] M. Grabisch, H.T. Nguyen, and E.A. Walker.
Fundamentals of Uncertainty Calculi with Ap-
plications to Fuzzy Inference. Kluwer Academic
Publishers, Dordrecht, 1995.

[8] D.J. Hand. Construction and Assessment of
Classification Rules. John Wiley and Sons, New
York, 1997.

[9] T. Hasti, R. Tibshirani, and J. Friedman.The El-
ements of Statistical Learning. Springer Verlag,
New York, 2001.

[10] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas.
On combining classifiers. IEEE Transactions
on Pattern Analysis and Machine Intelligence,
20:226–239, 1998.

[11] E.P. Klement, R. Mesiar, and E. Pap.Triangu-
lar Norms. Kluwer Academic Publishers, Dor-
drecht, 2000.

[12] L.I. Kuncheva. Combining Pattern Classifiers:
Methods and Algorithms. John Wiley and Sons,
New York, 2004.

[13] S. Moehmel, N. Steinfeldt, S. Endgelschalt,
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