Fuzzy chromatic number and fuzzy defning number of certain fuzzy graphs

M.M.Pourpasha
University of Azad Islamic
Department of Mathematics
Azad Islamic chalus nowshahr Branches, chalus Iran

M.R.Soheilifar
Institute of Electronic Engineering
University of naval sciences naval sciences, nowshahr Iran

Abstract

In this paper we introduce the concepts of fuzzy defning number in some fuzzy graphs. we determine the chromatic number for several classes of fuzzy graphs and obtain bounds for them. We also determine the fuzzy defning number of the classes.

Key-Words: fuzzy graph, fuzzy chromatic number, union, join, the Cartesian product.

1 Introduction

The motivation for introducing fuzzy graphs is regected upon by Rosenfeld in (Zadeh, 1975). Then the fuzzy graphs were discussed in (Kaufman, 1977, Dubois, Prade, 1980, Volkmann, 1991) and in some others papers and books. There are many problems, which can be solved with the help of the fuzzy graphs. Graph theory has proved to be an extremely useful tool for solving many tasks (Berge, 1989), [?]. Let V be a £nite nonempty set. Let E be the collection of all two-element subsets of $V(E \subseteq V \times V)$. A fuzzy graph $\tilde{G}=(\sigma, \mu)$ is a set with two functions $\sigma: V \rightarrow I$ and $\mu: E \rightarrow I^{\prime}$ such that $\mu(\{x, y\}) \preceq \sigma(x) \wedge \sigma(y)$ for all $x, y \in V$. Where $\sigma: V \rightarrow I$ and $\mu: E \rightarrow I^{\prime}$ are the vertex membership function on the I and edge membership function on the I^{\prime} respectively, and $\sigma(x), \mu(\{x, y\})$ reqects the ambiguity of the assertion x belongs to I, I^{\prime} respectively, [2]. In classical fuzzy-set theory the set I is usually defned as the closed interval $[0,1]$, in such a way that $\sigma(x)=0$ indicates that x does not belong to $I, \sigma(x)=1$ indicates that x strictly belongs to I, and any intermediate value represents the degree in which x could belong to I. However, the set I could be a discrete set of the form $I=\{0,1, \ldots, k\}$, where $\sigma(x) \leq \sigma\left(x^{\prime}\right)$ indicates that the degree of membership function x to I is lower than the degree of membership function x^{\prime}. In general, the set I can be any ordered set, not necessarily numerical, for instance, $I=\{n, l, m, h, t, c, p\}$, where n, l, m, h, t, c and p denote the fuzzy degrees null, low, medium, high,
total, complete and perfect, respectively, [8].
Graph theory has numerous applications to problems in systems analysis, operations research, mobile telephone service,missile guidance , transportation, and economics. In many cases, however, some aspects of the graph-theoretic problem are uncertain. In these cases, it can be useful to deal with this uncertainty using the methods of fuzzy logic. Graph coloring is one of the most studied problems of combinatorial optimization. An important area of application of the coloring problem is management science, $[3,5,9$, 12, 13]..

1.1 Preliminaries

Defnition 1 Let S be the available color set. Let d be the dissimilarity measure de£ned by $d: S \times S \rightarrow$ $[0, \infty)$ with the following properties:

$$
\begin{array}{ll}
\text { 1. } d(r, s) \geq 0 & \forall r, s \in S, \\
\text { 2. } d(r, s)=0 \Leftrightarrow r=s & \forall r, s \in S, \\
\text { 3. } d(r, s)=d(s, r) & \forall r, s \in S .
\end{array}
$$

This dissimilarity measure d can take into account the incompatibility degree in the sense that the more incompatible two vertices are, the more distant their associated colors. In this way, an extended coloring function is introduced [8].

De£nition 2 Let I^{\prime}, be a domain of the edge membership function of the fuzzy graph $\tilde{G}=(\sigma, \mu)$, we de£ned $f: I^{\prime} \rightarrow[0, \infty)$ be a non-negative, nondecreasing (with respect to the order \leq) and real scale function, i.e.

$$
f\left(\mu_{1}\right) \leq f\left(\mu_{2}\right) \forall \mu_{1}, \mu_{2} \in I^{\prime} \text { such that } \mu_{1} \leq \mu_{2}^{(2) .}
$$

De£nition 3 Given I, be a domain of the vertex membership function of the fuzzy graph $\tilde{G}=(\sigma, \mu)$, we de£ned $g: I \times I \rightarrow[0, \infty)$ be a non-negative, nondecreasing (with respect to the order \leq) real scale function, i.e.
$\forall \sigma_{i}, \sigma_{j}, \sigma_{i^{\prime}}, \sigma_{j^{\prime}} \in I_{\text {such that }} \mu_{i j} \leq \mu_{i^{\prime} j^{\prime}} g\left(\sigma_{i}, \sigma_{j}\right) \leq$ $g\left(\sigma_{i^{\prime}}, \sigma_{j^{\prime}}\right)^{(3)}$

Defnition 4 Given a fuzzy graph $\tilde{G}=(\sigma, \mu)$, a color set S, a dissimilarity measure d de£ned on S and scale functions $f, g, a(d, f, g)$-extended coloring function of G, denoted as $C_{d, f, g}$, for short as C, is a mapping: $C: V \rightarrow S$ with the property:

$$
\begin{aligned}
& d(C(i), C(j)) \geq f\left(\mu_{i j}\right) \forall i, j \in V, \text { such that } i \neq j \\
& d(C(i), C(j)) \geq g\left(\sigma_{i}, \sigma_{j}\right) \forall i, j \in V, \text { such that } i \neq j
\end{aligned}
$$

(4)

A (d, f, g)-extended k-coloring $C_{d, f, g}^{k}$, for short C^{k}, is a (d, f, g)-extended coloring function with no more than k different colors: $C^{k}: V \rightarrow S$, where $S=\{1, \ldots, k\}$.

Defnition 5 Given a fuzzy graph \tilde{G}, a dissimilarity measure d and scale functions f, g, the minimum value k for which a (d, f, g)-extended k-coloring of \tilde{G} exists is called the (d, f, g)-chromatic number of \tilde{G} and it is denoted by $\chi_{d, f, g}(\tilde{G})$ [8].

Defnition 6 Given a fuzzy graph $\tilde{G}=(\sigma, \mu)$, a set of vertices S with an assignment of colors to them is called a de£ning set of the vertex coloring of \tilde{G} if there exists a unique extension of the colors of S to a $\chi_{d, f, g}(\tilde{G})$-coloring of the vertices of \tilde{G}. A de£ning set with minimum cardinality, is called a minimum de£ning set and its cardinality, the de£ning number, is denoted by $d_{d, f, g}\left(\tilde{G}, \chi_{d, f, g}\right)$, for short $d_{d, f, g}$ [7].

2 Some results

De£nition 7 Let $\sigma: V \longrightarrow I$ be a fuzzy subset of V. Then the complete fuzzy graph on σ is de£ned to be (σ, μ) where $\mu(x y)=\sigma(x) \wedge \sigma(y)$ for all $x y \in E$ and is denoted by $K_{\sigma}[11] .$.

Proposition 8 Let K_{σ} be a complete fuzzy graph, and d be a dissimilarity measure and f, g be the scale functions where $g(\sigma(i), \sigma(j))=f\left(\mu_{i j}\right)$ for all $i, j \in$ V. Then $1 \leq \chi_{d, f, g}\left(K_{\sigma}\right) \leq 1+(n-1) D$ where $D=\operatorname{Max}\{f(\mu(x y)) \mid x y \in E\}$ and $n=|V|$.

Proof: By defnition any edge of K_{σ} is an effective edge. Consider the greedy coloring, if for $v_{i} v_{j}$, $D=f\left(\mu\left(v_{i} v_{j}\right)\right)$ then by rearrangement in number of vertices we put $D=f\left(\mu\left(v_{1} v_{2}\right)\right)$. Now we can color the frst vertex by number 1 , the second vertex we can color by number $1+D$ then third vertex is colored by $1+2 D$ since $D \geq f(\mu(3 y)) \forall y \in V$. Also the forth vertex is colored with the number $1+3 D$ because $D \geq f(\mu(4 y))$, In this way we found the $n_{t h}$ vertex color by $1+(n-1) D$. This coloring is an upper bound for coloring of this graph, because we suppose D is a maximum value scale function for every edge.

Defnition 9 A path P a fuzzy graph $G=(\sigma, \mu)$ is a sequence of distinct vertices $\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right)$ such that $\mu\left(u_{i}, u_{i+1}\right)>0,1 \leq i \leq n$ and n is called the length of P. The path P is called $u_{0}-u_{n}$ path [11].

Proposition 10 Let \tilde{P} be a fuzzy path, a d be dissimilarity measure and f, g be the scale functions where $g(\sigma(i), \sigma(j))=f\left(\mu_{i j}\right)$ for all $i, j \in V$. Then $1 \leq$ $\chi_{d, f, g}(\tilde{P}) \leq 1+D$ if $D=\max \{f(\mu(x y)) \mid x y \in E\}$. Also $d_{d, f, g}(P)=n-1$.

Proof: If $D=f\left(\mu\left(v_{i} v_{i+1}\right)\right)$ then the vertex v_{i} is colored by color 1 and the vertex v_{i+1} is colored by $1+D$. Also for coloring other vertices we assign vertices v_{j}, v_{j+1} for all $j>i+1$ by color 1 and $1+D$ respectively, and for all $j<i+1$ by color $1+D$ and 1 respectively, therefore the chromatic number of P is $1+D$. By greedy coloring. Since for coloring fuzzy path we determined an edge with maximum value scale function f, denoted as D and coloring all vertices by color 1 and $1+D$. Also we can color fuzzy Path by some colors such that the relation in condition (4) on defnition 4 is true. Then we must choose $n-1$ vertices for forcing color of the last vertex. So $d_{d, f, g}(P)=n-1$.

Defnition 11 A fuzzy graph $G=(\sigma, \mu)$ is said to be bipartite if the vertex set V can be partitioned into two nonempty sets V_{1} and V_{2} such that $\mu\left(v_{1} v_{2}\right)=0$ if $v_{1}, v_{2} \in V_{1}$ or $v_{1}, v_{2} \in V_{2}$. Further if $\mu(x y)=\sigma(x) \wedge$ $\sigma(y)$ for all $x \in V_{1}$ and $y \in V_{2}$ then G is called a fuzzy complete bipartite graph and is denoted by $K_{\sigma_{1}, \sigma_{2}}$ where σ_{1} and σ_{2} are, respectively, the restrictions of V to V_{1} and $V_{2}[2]$.

Proposition 12 Let $K_{\sigma_{1}, \sigma_{2}}$ be a fuzzy complete bipartite graph, d a dissimilarity measure and the f, g be scale functions. where $g\left(\sigma_{1}(i), \sigma_{2}(j)\right)=f\left(\mu_{i j}\right)$
for all $i, j \in V$. Then $1 \leq \chi_{d, f, g}\left(K_{\sigma_{1}, \sigma_{2}}\right) \leq$ $1+D$ if $D=\max \{f(\mu(x y)) \mid x y \in E\}$. Also $d_{d, f, g}\left(K_{\sigma_{1}, \sigma_{2}}\right)=n-1$.

Proof: Consider the greedy coloring. If $D=$ $f(\mu(u v))$ where $u \in V_{1}$ and $v \in V_{2}$ then the vertex u is colored by color 1 and vertex v is colored by $1+D$. For coloring other vertices we assign the color 1 to the $v_{i} \in V_{1}$ and the color $1+D$ to the vertices $v_{j} \in V_{2}$. (Also we can color this by some colors such that the relation in (4) is true) therefore the chromatic number of $K_{\sigma_{1}, \sigma_{2}}$ is $1+D$. By the de£nition of $K_{\sigma_{1}, \sigma_{2}}$, $D=\max \{f(\mu(x y)) \mid x y \in E\}$, by the greedy coloring, Since we can color vertices of part one in $K_{\sigma_{1}, \sigma_{2}}$ by color 1 and vertices part two by color $1+D$. Also we can color this vertices by some colors such that the relation in condition (4) on defnition 4 is true. Therefore we must choose $n-1$ vertices for forcing coloring the last vertex. So $d_{d, f, g}\left(K_{\sigma_{1}, \sigma_{2}}\right)=n-1$.

Proposition 13 Let $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=$ $\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs on V_{1} and V_{2} respectively with $V_{1} \cap V_{2}=\phi, d$ a dissimilarity measure and the f, g be scale functions, where $g\left(\sigma_{t}(i), \sigma_{t}(j)\right)=$ $f\left(\mu_{i j}\right)$ for all $i, j \in V, t=1,2$. If $G=\left(G_{1} \cup G_{2}\right)$ then $1 \leq \chi_{d, f, g}(G) \leq \max \left\{\chi_{d, f, g}\left(G_{1}\right), \chi_{d, f, g}\left(G_{2}\right)\right\}$. Also $d_{d, f, g}\left(G_{1} \cup G_{2}\right)=d_{d, f, g}\left(G_{1}\right)+d_{d, f, g}\left(G_{2}\right)$.

Proof: Let $D=\max \left\{\chi_{d, f, g}\left(G_{1}\right), \chi_{d, f, g}\left(G_{2}\right)\right\}$. We consider the greedy coloring, If the fuzzy graph $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ is colored by $\chi_{d, f, g}\left(G_{1}\right)$ colors and $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ is colored with $\chi_{d, f, g}\left(G_{2}\right)$. By the de£nition of $G=\left(G_{1} \cup G_{2}\right)$, we color vertices v_{i} $\in V_{1}$ by D colors and for coloring vertices $v_{j} \in V_{2}$ with D colors, therefore the chromatic number of $G_{1} \cup G_{2}$ is D. If the defning number of fuzzy graph $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ is $d_{d, f, g}\left(G_{1}\right)$ and the defning number of $G_{2}=\left(\sigma_{2}, \mu_{2}\right)$ is $d_{d, f, g}\left(G_{2}\right)$ then we can choose $d_{d, f, g}\left(G_{1}\right)$ vertices of G_{1} and $d_{d, f, g}\left(G_{2}\right)$ vertices of G_{2} therefore the defning number of $G_{1} \cup G_{2}$ is obtained $d_{d, f, g}\left(G_{1}\right)+d_{d, f, g}\left(G_{2}\right)$.

Proposition 14 Let $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=$ $\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs on V_{1} and V_{2} respectively with $V_{1} \cap V_{2}=\phi$, d a dissimilarity measure and the f, g be scale functions, where $g\left(\sigma_{t}(i), \sigma_{t}(j)\right)=$ $f\left(\mu_{i j}\right)$ for all $i, j \in V, t=1,2$. If $G=\left(G_{1}+G_{2}\right)$ then $1 \leq \chi_{d, f, g}(G) \leq \chi_{d, f, g}\left(G_{1}\right)+\chi_{d, f, g}\left(G_{2}\right)+D$, where $D=f\left(\max \left\{\sigma_{i} \wedge \sigma_{j}, \forall i \in V_{1}, j \in V_{2}\right\}\right)$.

Proof: We consider the greedy coloring, If the chromatic number of fuzzy graph $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ is
$\chi_{d, f, g}\left(G_{1}\right)$ and the chromatic number fuzzy graph G_{2} is $\chi_{d, f, g}\left(G_{2}\right)$ then by the defnition of $G=\left(G_{1}+G_{2}\right)$, if the vertex v_{n} is the last vertex in G_{1} is colored, then we color vertex $v_{1} \in V_{2}$ with $D+\chi_{d, f, g}\left(G_{1}\right)$ and the other vertices in G_{2} are color by the greedy coloring. Then the fuzzy graph G is colored by $\chi_{d, f, g}\left(G_{1}\right)+$ $\chi_{d, f, g}\left(G_{2}\right)+D\left(\right.$ since $s=f\left(\sigma_{i} \wedge \sigma_{j}\right) \leq D$ also we can color vertex $v_{1} \in V_{2}$ by color $s+\chi_{d, f, g}\left(G_{1}\right)$ where the relation (4) is true.) there for the chromatic number of G is at most $\chi_{d, f}\left(G_{1}\right)+\chi_{d, f}\left(G_{2}\right)+D$. .

In what follows the defnition of fuzzy graph $G=$ $\left(G_{1} \square G_{2}\right)$, we will call the $n=\left|V_{1}\right|$ copies of G_{2} in the Cartesian product the rows of the $G=\left(G_{1} \square G_{2}\right)$, and the $m=\left|V_{2}\right|$ copies of G_{1} the columns of the $G=\left(G_{1} \square G_{2}\right)$.

Proposition 15 Let $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ and $G_{2}=$ $\left(\sigma_{2}, \mu_{2}\right)$ be two fuzzy graphs on V_{1} and V_{2} respectively with $V_{1} \cap V_{2}=\phi$, d a dissimilarity measure and the f, g be scale functions, where $g\left(\sigma_{t}(i), \sigma_{t}(j)\right)=$ $f\left(\mu_{i j}\right)$ for all $i, j \in V, t=1,2$. If $G=\left(G_{1} \square G_{2}\right)$ then $1 \leq \chi_{d, f, g}(G) \leq \chi_{d, f, g}\left(G_{1}\right)+\chi_{d, f, g}\left(G_{2}\right)$.

Proof: We consider the greedy. If the chromatic number of fuzzy graph $G_{1}=\left(\sigma_{1}, \mu_{1}\right)$ is $\chi_{d, f, g}\left(G_{1}\right)$ and the chromatic number fuzzy graph G_{2} is $\chi_{d, f, g}\left(G_{2}\right)$. We assign the colors $\left\{1,2, \ldots, \chi_{d, f, g}\left(G_{2}\right)\right\}$ the vertices $v_{1 j}$ for $j=1, \ldots, m$. (since for any vertex we have a copy of G_{1}) and if the vertex $v_{1 m}$ is last vertex where colored by color $\chi_{d, f, g}\left(G_{2}\right)$ then we color a copy of G_{1} corresponding with $v_{1 m}$ and the vertices $v_{1 m}, v_{2 m}, v_{3 m}, \ldots, v_{n m}$ are colored by $\chi_{d, f, g}\left(G_{2}\right)+$ $1, \chi_{d, f, g}\left(G_{2}\right)+2, \chi_{d, f, g}\left(G_{2}\right)+3, \ldots, \chi_{d, f, g}\left(G_{2}\right)+$ $\chi_{d, f, g}\left(G_{1}\right)$, respectively. Then the chromatic number fuzzy graph G is $\chi_{d, f, g}\left(G_{1}\right)+\chi_{d, f, g}\left(G_{2}\right)$.

Defnition 16 A cycle C in a fuzzy graph $\tilde{G}=(\sigma, \mu)$ is a sequence of distinct vertices $\left(u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right)$ such that $\mu\left(u_{i}, u_{i+1}\right)>0,1 \leq i \leq n$ where $u_{0}=u_{n}$ and n is called the length of C, and is denoted by \tilde{C}_{n}.

Lemma 17 Let \tilde{C}_{n} be a fuzzy cycle, d a dissimilarity measure and the f, g be scale functions, where $g\left(\sigma_{t}(i), \sigma_{t}(j)\right)=\underset{\sim}{\sim}\left(\mu_{i j}\right)$ for all $i, j \in V, t=1,2$. Then $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n}\right) \leq 1+D$ if n is even and $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n}\right) \leq 1+2 D$ if n is odd where $D=\max \{f(\mu(x y)) \mid x y \in E\}$.

Proof: First assume that n is even, If $D=f\left(\mu\left(u_{i} u_{i+1}\right)\right.$, without loss generality we
can assume that $D=f\left(\mu\left(u_{1} u_{2}\right)\right.$ then the £rst vertex colored by color 1 and the second vertex is colored by $1+D$ and the other vertices color by $1,1+D$ respectively. Since n is even the $n_{t h}$ vertex colored by $1+D$ therefore its chromatic number in this case is $1+D$. If assume that n is odd, if $D=f\left(\mu\left(u_{i} u_{i+1}\right)\right.$, without loss generality we can assume that $D=f\left(\mu\left(u_{1} u_{2}\right)\right.$ then the $£$ rst vertex is colored by color 1 and the second vertex is colored by $1+D$ and the other vertices are colored by 1 and $1+D$ respectively. Since n is odd, the $(n-1)_{t h}$ vertex colored by $1+D$ and can't color the $n_{t h}$ vertex by color 1 because its neighborhood has color 1 therefore we color it by color $1+2 D$. So the chromatic number in this case is $1+2 D$.

Fig.1. Fuzzy cycles \tilde{C}_{6} and \tilde{C}_{5}
Defnition 18 A $n \square m$ fuzzy torus is de£ned as $\tilde{C}_{n} \square \tilde{C}_{m}$, where \tilde{C}_{n} and \tilde{C}_{m} are fuzzy cycles of length n and m, respectively, and the multiplication is the fuzzy Cartesian product for graphs.

In what follows, the m copies of \tilde{C}_{n} in the fuzzy Cartesian product [10] are the rows of the torus, and the n copies of \tilde{C}_{m} are the columns of the torus.

Lemma 19 Let $\tilde{C}_{n} \square \tilde{C}_{m}$ be a fuzzy torus, d a dissimilarity measure and the f, g be scale functions, where $g\left(\sigma_{t}(i), \sigma_{t}(j)\right)=f\left(\mu_{i j}\right)$ for all $i, j \in V, t=1,2$. Then $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right) \leq 1+D$ if n, m are even and $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right) \leq 1+2 D$ if n or m is odd where $D=\max \{f(\mu(x y)) \mid x y \in E\}$.

Proof: If m, n both are even, by defnition of fuzzy Cartesian product we have the m copies of \tilde{C}_{n} in the rows and the n copies of \tilde{C}_{m} in the columns if by proof of proposition 8 we color the $£$ rst copy of \tilde{C}_{n} in row where the vertex v_{11} is colored by color 1 and color the £rst column in fuzzy torus where contains v_{11} by colors $1,1+D$ respectively. Therefore in other rows one vertex is colored and other vertex in any
rows is colored too. So we have $\chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right) \leq$ $1+D$. If one of the m, n are odd then by defnition of fuzzy Cartesian product and without loss generality assume m is odd and n is even then the frst vertex of £rst rows as denoted v_{11} colored by color 1 and other vertices this row by way of proof proposition 8 is colored by $1+D, 1$ respectively. Since m is odd we can coloring the frst column by $1,1+D, 1+2 D$ respectively. Also the £rst vertex of other rows is colored so we can colored them by way in proof of proposition 8 therefore in this case $\chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right) \leq 1+2 D$. If n, m both are odd by consider greedy coloring and fuzzy Cartesian product we colored the £rst copies of \tilde{C}_{n} in rows by color $1,1+D, 1+2 D$ by way in proposition 8 then the £rst vertex of $£$ rst copies of \tilde{C}_{m} in column is colored by 1 and other vertices this column is coloring by $\{1+D, 1+2 D\}$ therefore for coloring any vertices of fuzzy torus in this state since two vertices in above and left it is colored in the worst state if two vertices have different colors we can colored it vertex by another color. So we can colored fuzzy torus by $\{1+D, 1+2 D\}$ or $\chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right) \leq 1+2 D$. in the worst state if all vertices membership value and edge membership value are equal then $\chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{C}_{m}\right)=1+2 D, .$.

Fig.2. Fuzzy torus $\tilde{C}_{4} \square \tilde{C}_{4}$ and $\tilde{C}_{4} \square \tilde{C}_{3}$ and $\tilde{C}_{3} \square \tilde{C}_{3}$.

Defnition 20 A fuzzy hypercube \tilde{Q}_{n} of dimension n is de£ned as $\tilde{Q}_{n-1} \square \tilde{K}_{2}$, where \tilde{K}_{2} is a fuzzy complete graph with 2 vertices, and \tilde{Q}_{n-1} is fuzzy hypercube of dimension $n-1$ with 2^{n-1} vertices and $\tilde{Q}_{1}=\tilde{K}_{2}$.

Proposition 21 Let \tilde{Q}_{n} be a fuzzy hypercube of dimension n, d a dissimilarity measure and the f, g be scale functions, Then $1 \leq \chi_{d, f, g}\left(\tilde{Q}_{n}\right) \leq 1+D$ if $D=f(\mu(e)), e \in E\left[\tilde{K}_{2}\right]$.

Proof: By greedy coloring, if $D=f(\mu(e))$, $e \in E\left[\tilde{K}_{2}\right]$, Since $\tilde{Q}_{1}=\tilde{K}_{2}$, for $n=1$ we can color
\tilde{Q}_{n} by color $1,1+D$. For any $n \geq 2$ by de $£$ nition Cartesian product we have 2^{n-1} copies of \tilde{K}_{2} which membership value of vertices of \tilde{Q}_{n} less than membership value of vertices of \tilde{K}_{2} and edge membership value of \tilde{Q}_{n} less than D. Therefore we can color any vertices of \tilde{K}_{2} by $1,1+D$ therefore we color fuzzy hypercube of dimension n where its chromatic number at last $1+D$. In the worst state if all vertices membership value and edge membership value are equal then $\chi_{d, f, g}\left(\tilde{Q}_{n}\right)=1+D$, (see Fig. 3)..

Fig.3. Fuzzy hypercube \tilde{Q}_{1} and \tilde{Q}_{2} and \tilde{Q}_{3}.
Defnition 22 Let \tilde{C}_{n} is fuzzy cycle of length n and \tilde{P}_{m} is fuzzy path of length m, the $\tilde{C}_{n} \square \tilde{P}_{m}$ is the fuzzy Cartesian product of them.

Proposition 23 Let $\tilde{C}_{n} \square \tilde{P}_{m}$ be a fuzzy graph,d a dissimilarity measure and the f, g be scale functions, $D_{1}=\max \left\{f(\mu(x y)) \mid x y \in E\left[\tilde{C}_{n}\right]\right\}$, $D_{2}=\max \left\{f(\mu(x y)) \mid x y \in E\left[\tilde{P}_{m}\right]\right\}$. Then $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{P}_{m}\right) \leq 1+D$ if n is even and $1 \leq \chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{P}_{m}\right) \leq 1+2 D$ if n is odd where $D=\max \left\{D_{1}, D_{2}\right\}$.

In what follows, the m copies of \tilde{C}_{n} in the Cartesian product are the rows of the $\tilde{C}_{n} \square \tilde{P}_{m}$, and the n copies of \tilde{P}_{m} are the columns of the $\tilde{C}_{n} \square \tilde{P}_{m}$.

Proof: If n is even by Lemma 1, we can color the fuzzy cycle \tilde{C}_{n} by color $1,1+D$ and by defnition of fuzzy Cartesian product the n copies of fuzzy path \tilde{P}_{m} are in the column where the $£$ rst vertex of all is colored with the color the £rst cycle in rows. Therefore for any \tilde{P}_{m} we can color other vertices by $1,1+D$ or $1+D, 1$. So in this case the chromatic number is at $1+D$. now assume n is odd. By proposition 8 we can color the fuzzy cycle \tilde{C}_{n} by colors $1,1+D, 1+2 D$. Then we obtained the n copies of fuzzy path \tilde{P}_{m} where one of its vertices is colored. We can color it by two colors of $\{1,1+D, 1+2 D\}$ respectively. Therefore in this case chromatic number at
last $1+2 D$. also in the worst case if all vertices membership value and edge membership value are equal then $\chi_{d, f, g}\left(\tilde{C}_{n} \square \tilde{P}_{m}\right)=1+2 D$.

References

[1]
[2] Blue M, Bush B, Puckett J, Applications of Fuzzy Logic to Graph Theory, 15 August 1997.
[3] Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW. Register allocation via coloring. Computer Languages 1981;6(1):4757.
[4] Christo£des N. Graph theory. An algorithmic approach. London: Academic Press; 1975.
[5] Eilon S, Christo£des N. The loading problem. Management Science 1971;17(5):25968.
[6] Liu CL. Introduction to combinatorial mathematics. NewYork: Mc-Graw Hill; 1968.
[7] Mojdeh D.A. On conjectures on the defning set of (vertex)graph colorings, Australians Journal of Combinatorics, Volume 34(2006), page 153160.
[8] Munoz S, Teresa Ortunoa M, Ramirez J, Yanez J, Coloring fuzzy graphs, Omega 33 (2005) 211 221.
[9] Roberts FS. On the mobile radio frequency assignment problem and the traffc light phasing problem. Annals of the New York Academy of Sciences 1979;319:46683.
[10] Somasundaram A, Domination in product of fuzzy graphs, World Scientifc Publishing Company Vol. 13,No. 2(2005)195-204.
[11] Somasundaram A, Somasundaram S, Domination in fuzzy graphs I, Pattern Recognition Letters 19 (1998) 787-791.
[12] Roman V. Tyshchuk" Maximum Flows In Fuzzy Networks With Funnel -Shaped Nodes",Information Systems Department, AMI corporation, Donetsk, Ukraine
[13] Mishra,s.k, and Sarma,i.g ,and Swamy,k.n.,"Performance Evalution of Two Fuzzy - Llogic -Based Homing Guidance Schems,"Journal of Guidance, Control, and Dynamics, Vol.17,no.6,1994,pp.1389-1391.

