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Abstract: - The data assignment problem occurs for multiple targets tracking application. It is crucial for the 
overall performance. In this paper, two observations of date assignment are considered, and then a new 
rotational sorting algorithm based on maximum likelihood principle was presented. The given algorithm of 
O(logN) and O(N2) complexity developed is faster than the more popularly used Hungarian  type O(N3) 
algorithm. 
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1 Introduction 
 
Multiple Targets Tracking problem is a well-know 
application of information processing commonly 
encountered in surveillance, computer vision and 
aerospace engineering, etc. The problem has been 
extensively studied[1-4]. At the heart of it lies a 
combinatorial data assignment (or data association), 
that is, determining which measurement in the 
measurement set corresponds to which target. 
Despite extended efforts in the past, the key problem 
has not been solved successfully as yet mostly 
because of the difficulty associated with the date 
assignment problem mainly because it remains NP 
hard when the number of the sensors exceed two even 
in the simplified cases with stationary targets[3]. In 
fact, for the case of N targets, standard state model 
based methods, like track splitting, probabilistic data 
association, Maximum Likelihood etc., involve 
searching over the N! possible combinations. So 
there is O(N3) Complexity of data assignment process 
embedded in the Maximum Likelihood(ML)-based 
solution of a Multiple Target Tracking problem. 

We will consider the general situation of 
tracking multiple moving targets involving 
associations by passive sensor array which does not 
emphasize the density of the scenarios [5]. Based on 

the formulation of [1,2], we resort to a maximum 
likelihood function of bearings-only measurements 
are maximized with respect to both data associations 
and target initial states by minimizing the magnitude 
of the average square errors (ASE) of its exponent. A 
global minimum can be attained in principle by 
repeating the following two steps until the solution 
converges: 1) minimizing the ASE with respect to 
initial target state vector for fixed data assignment 
matrices; 2) minimizing the ASE with respect to data 
assignment matrices constructed for the given initial 
state vector. The first step of the approach usually 
exploits the Gauss-Newton downhill type algorithm, 
while the second step resorts to most famous 
Hungarian type algorithms [6-8], however, all of 
which have the complexity of O(N3) 

In this paper, two observations of date 
assignment are considered. As we proved one of the 
observation in this paper, the rotational angular 
sorting-based new algorithm is capable of reducing 
the O(N3) complexity of Hungarian type algorithms 
to O(N2). Further more, according to the result of 
experiment, we believe that the new algorithm has 
the O(logN) complexity by utilizing dichotomous 
search method. It will be much faster than those of 
O(N3) Hungarian type algorithms most frequently 
used. 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          260



The rest of the paper will be organized as 
follows. In section 2, we review the formulation of 
the problem, presenting a modified conditional 
likelihood function there. The observations, theorems 
and experiments for establishing the optimality of the 
data association problem are given in section 3. 
Section 4 includes some concluding remarks. 
 
2 Problem Formulation and ML 
Principle 
 
2.1 Problem Formulation 
The detailed formulation of the Multiple Target 
Tracking problem could be found in [1]. Consider a 
system of N moving targets to be tracked by a passive 
array of M sensors capable of measuring only the 
bearings of all the targets. It is required to estimate 
the target tracks by resolving the data association 
problem linking targets to sensor measurements. A 
typical multitarget-multisensor encounter is 
illustrated in Figure 1 
 

 
Figure 1. Typical Target-Sensor Encounter 
 
The state of a target t at time index j is described by 
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Where  denotes its Cartesian 
co-ordinates and  its velocity 
components The sensor i is located at the positions 

, i=1,2,…S. We assume that at time j, the 
measuring bearing data from target t for sensor i can 
be written using the state vector  as, 

))(),(( jrjr t
y

t
x

))(),(( jvjv t
y

t
x

),( i
ys

i
xs rr

)( jX t

πβπβ 2)(0,2mod)(]
)(
)(

[tan)( ,,
,

,
1, <≤+= − jjw

jr
jr

j itit
it

y

it
xit   

            (2) 
Where  and 

’s denote noise components of the ith sensor 
assumed to be white, Gaussian noise with zero mean 
and variance . 
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The measuring bearing data vector of sensor i at 
time j forms a N-tuple vector as, 

))'(,),(),(()( ,,2,1 jjjj iNiii ββββ L=   (3) 
Using the measuring data from multiple sensors, we 
want to estimate the positions  for all 
targets t, t=1,2,…,N and all the time indices j, 
j=0,1,…,K. Since we have no a prior knowledge on 
the origin of each measurement, we have to associate 
each measurement vector with an N
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× N data 
assignment matrix  for all i and j, whose 
components consist of 0-1 elements with just one if 
its element to take on the value of 1 in each of the 
rows and columns: Here the entry =1 
denotes that the mth element of measurement vector 

 is associated with the tth target. Then denote 
 as the cumulative 

N-tuple bearing estimate measurement vector of 
sensor i at time j, where  is the 
estimated measurement for the target t from the 
sensor i at time j. This can be obtained from the initial 
target state vector X  which describes the position 
and velocity of all the targets, by an arctangent 
function like (2). Then the problem can best be 
formulated by a ML-based approach as follows 
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2.2 ML Principle for Multiple Target 

Tracking 
A solution to the ML-based multiple targets tracking 
algorithm is obtained by maximizing the conditional 
likelihood of the measurements of the sensors 

 given 
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This is equivalent to minimizing the 

corresponding ASE, 
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IR ii

2σ=  of Eqs. (4) and (5) denotes the N × N 
diagonal noise covariance matrix at the ith sensor and 
c is a constant. Where  if . 

With  fixed, these N independent ’s can be 
minimized with respect to  by the Gauss-Newton 
iteration [1]. Consider the form of the average square 
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error in (5). Each summand is nonnegative, and thus, 
for a given , minimizing E with respect to  is 
equivalent to minimizing each individual term 
independently with respect to . Thus, we 
perform the following operations for minimizing (5) 
with respect to , This requires a minimization of 
the following cost function: 
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Note that Eqs. (4) and (5) differ distinctly from 
those of the existing references on this topic[1], it is 
defined as, 
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We see immediately that this new operation is 
needed to ensure the angular differences formed to be 
in ( ]ππ ,−  such that the mismatching of angles 
across the so-called Riemann sheet is avoided, 
including our previous work [10].

Most of the existing publications solve the data 
assignment problem in minimization equation (6) by 
general Hungarian type algorithms. But we now 
show that the following 2 observations of the 
coefficient matrix, and prove the observation 1 
strictly, and verify observation 2 by experiment, then 
we draw a conclusion that the rotational sorting 
algorithm can be used for the data assignment 
process of Multiple Target Tracking problem, 
reducing the computational complexity from O(N3) 
of the Hungarian type algorithms to O(N2), even to 
O(logN) 
 
3   Main Results 
 
Before we introduce our observation, there are some 
definition should be purposed firstly 
Definition 1: For arbitrary two angles α  and β , 

πβα 2,0 <≤ , then defined 
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Definition 2 (Rotational Sort): For a list of angles 
nααα ,,, 21 L , πα 20 <≤ i , i=1,2,…,n, the rotational 

sort of the angles is defined as a permutation 
inii ααα ,,, 21 L , such that 

πααπαα 2mod2mod 11 iiviiu −≥− , for any 
nvu ≤<≤1 . 

The notation nααα pLpp 21  implies that a list of 

nααα ,,, 21 L  has been rotationally sorted, and we 
can always use “ ” to denote a sequence of any two 
angles in the list, if the condition of Definition 2 is 
satisfied. It should be important to note that even if 

p

nααα ,,, 21 L  are all distinct and unequal, the 
rotational sorting of the list is not unique. 
Definition 3 (movable unimodal): The finite series of 
real numbers nααα ,,, 21 L , is called a movable 
unimodal series if and only if there exits two element 

ji αα , , such that the series 11 ,,, −+ jii ααα L  is a 
strictly decreasing series and 11 ,,, −+ ijj ααα L is a 
strictly increasing series, where ni+α is denoted as 

iα . 
Observation 1: Suppose 21 , ii ββ  and 3iβ  are distinct 
and pair-wise unequal elements of the vector 

)',,,( 21 Nββββ L= , satisfying 321 iii βββ pp , and 
,  are distinct and pair-wise unequal 

elements of the vector  satisfying 
. If C is the assignment matrix 

satisfying 
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The Lemma 1 is needed to prove Observation 1. 
Lemma 1: Let C be an assignment matrix between 
vector )',,,( 21 Nββββ L=  and , 
satisfying 
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And suppose that there is a rotational sort of the 
angles 
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Then C can not be a best assignment matrix. 
Proof: Without loss of generality, we suppose that the 
property 2 is applicable. Then we will need to 
consider only the three cases of figure 2; 
(1) , (2)  and 
(3)  separately. For the case of (2) 
and (3), we see immediately that 
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2
22 )ˆ( ij ββ −& + < +  is 

obvious, For case (1), we have 
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The conclusion of the lemma is now immediate. 
 

 
Figure 2. An Example of the 4 Angles in Lemma 1 
 
Theorem 1: Suppose that the cumulative bearing 
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The conclusion of Theorem 1 is immediate from 
Observation 1 which has been proved. 

Theorem 1 shows that an optimal local matrix 
 for a fixed )( jCi X̂  can be obtained first by sorting 
 and  by any of the sorting algorithm with 

the complexity of O(NlogN), and then choosing the 
one satisfying Theorem 1 from among N potential 
candidates. This can be obviously done with the 
complexity of O(N

)( jiβ )(ˆ jiβ

2). The complexity of computing 
the present assignment matrix  is far more 
efficient than the Hungarian method type algorithm 
used by most of previous works having the 
complexity of O(N

)( jC i

3). 
Now according to the rotational enumeration 

matches, we define that: 
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            (7) 

So, )),(,),,(),,((),( 21 jiTjiTjiTjiT NL=  
Then minimizing T(i, j) in (6) equal to selecting 

the minimum component in vector T(i, j) above. 
Furthermore, we found an interesting fact as follows. 
Observation 2: T1, T2,…,TN form a movable 
unimodal series, if both of  and 

Nβββ ˆ,,ˆ,ˆ
21 L Nβββ ,,, 21 L  

have been rotational sort. Where T1, T2,…,TN  
definite by  and 

Nβββ ˆ,,ˆ,ˆ
21 L Nβββ ,,, 21 L  as above. 

Although we have found the rule in observation 
2 which describes the perfect property of cost 
functions through experiments (Fig. 3), it is yet to be 
proved theoretically. But this rule is always correct in 
our experiments and it is so important that it can 
reduce the computational complexity from O(N2) to 
O(logN). Before we finally introduce the complete 
algorithm, a Dichotomous Search method should be 
given as below, 
Dichotomous Search: This finds the minimum of a 
unimodal discrete function T1, T2,…,TN on an interval, 
[1, N], by evaluating points placed near the center, 
approximating the bisection method. 
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Figure 3 T1, T2,…,TN form a movable unimodal series 
 

It should be important to note that even if T1, 
T2,…,TN is not a unimodal series but a movable 
unimodal series, Dichotomous Search method also 
can be valid. In fact, if T1, T2,…,TN is a movable 
unimodal series, we can connect (1,T1) and (N, TN) by 
the line f, and then we have (1, f(1)), (2, f(2)),…,(N, 
f(N)), then we will get a new unimodal series, that is 
min{T1, f(1)}, min{T2, f(2)},…, min{TN, f(N)}, and 
the minimum must be in those unimodal series. So 
we can use Dichotomous Search method to find the 
minimum. It is obvious that an rotational sorting 
algorithm can be used for the data assignment 
process of multiple targets tracking problem with 
O(logN) computational complexity. The algorithm is 
illustrated in the table 1 

Table 1 Routine for finding an optimal assignment 
matrix 
1. Sort the terms in into increasing order )( jiβ

2. Sort the terms in into increasing order )(ˆ jiβ

3. Obtain T1, T2,…,TN using (7) 
4. Obtain f(1),f(2),..,f(N) 
5. Obtain min{T1,f(1)}, min{T2,f(2)},…, 

min{TN,f(N)}, 
6. Dichotomous Search method to find the 

minimum, then decide the optimal 
assignment matrix. 

 

4   Conclusions 
In this paper, we presented an improved solution of a 
maximum likelihood(ML)-based multiple targets 
tracking problem. We have proved that a new O(N2) 
data assignment algorithm based on the rotational 
sorting of angles maximizes the conditional 
likelihood function with respect to data association 
for fixed target states. Further more a faster algorithm 
based Observation 2 was developed, the performance 
of the ML-based relaxation algorithm has been 
significantly improved. It would not be difficult to 
show that the present data assignment algorithm can 
also be converted to solve a generalized version of 
the n-Tokyoites’ loop line commuter problem[11]. 

Further study would prove Observation 2 
theoretically, and find applications in multiple 
targetS tracking problem with missing or cluttering 
sensor data. 
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