
Parallel Algorithm for Finding the Minimum Edges
to Build a Strongly Connected Directed Graph

AKIO TADA
Sojo University

Faculty of Computer and Information Sciences
Department of Computer System Technology

Ikeda 4-22-1, Kumamoto City
JAPAN

tada@cis.sojo-u.ac.jp

EIICHI MUKAI
Sojo University

Faculty of Computer and Information Science
Department of Computer System Technology

Ikeda 4-22-1, Kumamoto City
JAPAN

mukai@cis.sojo-u.ac.jp

MASAHIRO MIGITA
Kumamoto University

Center for Multimedia and Information Technologies
Kurokami 2-39-1, Kumamoto City

JAPAN
migita@cc.kumamoto-u.ac.jp

TSUYOSHI ITOKAWA
Kumamoto University

Graduate School of Science and Technology
Computer Science and Electrical Engineering

Kurokami 2-39-1, Kumamoto City
JAPAN

itokawa@cs.kumamoto-u.ac.jp

Abstract: The problem of finding the minimum edges to build a strongly connected directed graph is one of the
most fundamental problems in graph theory. The known parallel algorithm solves this problem in O(log n) time
using O(n3) processors on a CRCW PRAM model. In this paper, we propose a parallel algorithm to find the mini-
mum edges to build a strongly connected directed graph for a disconnected directed acyclic graph in O(log(n+m))
time using O(n + m) processors on a CREW PRAM model. This algorithm is an efficient parallel algorithm be-
cause the number of processors depends on the density of the given graph and the time complexity is also more
efficient when compared with the identical model.

Key–Words: Parallel algorithm, Minimum edges, Directed acyclic graph(DAG), Strongly connected compo-
nent(SCC), CREW PRAM model

1 Introduction
The problem of finding the minimum edges to make
a disconnected directed graph strongly connected is
one of the fundamental problems in graph theory.
The known parallel algorithm[1] in a disconnected
directed graph with n vertices and m edges takes
O(log n) time using O(n3) processors on a CRCW
PRAM model. Since this algorithm depends on the
transitive closure matrix calculation, it is difficult to
reduce the number of processors furthermore.

In this paper, we propose an efficient parallel al-
gorithm for finding the minimum edges to build a
strongly connected directed graph for a disconnected
directed acyclic graph on a CREW PRAM model, us-
ing only the basic parallel algorithms. Namely, the
proposed algorithm initially finds source and sink ver-
tices in a given graph, and divides the given graph into
several linked lists, in which each vertex has at most

1 both input and output edge degree. Next we de-
tect each connected component on the divided linked
lists, and connect from a sink to a source between
each connected component. Finally, after the remain-
ing unlinked sources and sinks are linked, the given
graph is made into one strongly connected component
graph. This algorithm requires O(log(n + m)) time
and O(n + m) processors on a CREW PRAM model.

This algorithm is an efficient parallel algorithm
because it requires at most O(n2) processors if the
given graph is a dense graph (m = O(n2)) and also
requires only O(n) processors if the given graph is
a sparse graph (m = O(n)). Moreover, the time
complexity of the known algorithm is O(log n) on a
CRCW PRAM model, while that of the proposed al-
gorithm is O(log(n+m)) on a CREW PRAM model,
therefore the proposed algorithm is more efficient than
the known algorithm when compared with the identi-
cal model.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 100

1 2 4

3

5

11

9

78

10

12

13

6

IV

OV

10987654321

91079655432

11998532211

Figure 1: Example of given disconnected directed
graph and array representation of edges.

2 The Proposed Parallel Algorithm
A given graph is a disconnected directed acyclic
graph, which contains isolated vertices but does not
contain cycles and multiple edges. Each vertex of con-
nected components in a given graph is serially num-
bered. The number of minimum added directed edges
to make a disconnected directed graph strongly con-
nected is given by Theorem 1 in [1] as follows:

Theorem 1 At least max(nso, nsi) + nis edges are
needed to make a given graph strongly connected,
where nso is the number of source vertices, nsi is the
number of sink vertices and nis is the number of iso-
lated vertices.

Namely,

minimum edges = max(nso, nsi) + nis

The proposed parallel algorithm is composed of
the following two stages:

• Stage 1: Divide a disconnected directed graph
into several linked lists

• Stage 2: Connect each source and sink to make a
disconnected graph strongly connected

A disconnected directed graph with n vertices and
m edges is given in the form of two arrays of directed
edges and the number of isolated vertices. Let the ar-
ray OV[1..m] be the out-vertex numbers and the array
IV[1..m] be the in-vertex numbers. Each i-th directed
edge is represented by a pair of OV[i] and IV[i], and
the edges are sorted in order of the out-vertex num-
ber. Isolated vertices do not appear in the input array
and they are assigned their vertex numbers larger than
those used in connected components. An example of a
disconnected directed acyclic graph and its array rep-
resentation of directed edges is shown in Figure 1.

In the following subsections the details of Stages
1 and 2 are respectively described. Stage 1 of this
algorithm is similar to the Stage 1 in [2, 3].

2.1 Stage 1: Divide a disconnected directed
graph into several linked lists

In this stage, we initially find sources and sinks in the
given graph and they are counted. Next, the given
graph is divided into several linked lists, in which each
vertex has at most 1 both input and output degree. The
list number is also assigned to each linked list, accord-
ing to the number of a heading vertex of each list, and
they are serially reassigned from 1. The consecutive
list numbers are assigned in each connected compo-
nent because the consecutive vertex numbers are given
in each connected component. Finally, the sources
and sinks of the linked lists are stored in two arrays.
This stage is composed of the following three steps.

Step 1.1 The in-degree and the out-degree for each
vertex are calculated. As the vertex with the in-
degree = 0 is a source and the vertex with the
out-degree = 0 is a sink, the sinks and sources in
the given graph are counted. Let the bigger num-
ber of the in-degree and out-degree be the maxi-
mum degree for each vertex. Each vertex which
has a maximum degree greater than 1 will be di-
vided into some new vertices. We call an original
vertex in the given graph a ’divided vertex’ and
call the new generated vertices ’sibling vertices’
of each divided vertex. Therefore, the number
of sibling vertices generated from a divided ver-
tex is equal to the maximum degree. This step
requires O(log m) time and O(m) processors.

Step 1.2 The sibling vertices of each divided vertex
are serially numbered to keep the same order
of the vertex number in the given graph. Here
a correspondence table N[1..S[n]] which corre-
sponds the new vertex number to the old vertex
number is prepared, where S[n] is the total num-
ber of all new vertices after division and S[n] =
O(n + m). Subsequently, the old vertex num-
bers in OV[1..m] and IV[1..m] are substituted
for the new vertex numbers, and new edges ar-
rays NOV[1..m] and NIV[1..m] are created re-
spectively. After all, the given graph is divided
into several linked lists with new vertex numbers.
This step requires O(log m) time and O(n + m)
processors.

In the example, Figure 2 shows the correspon-
dence table N and the new edges arrays NOV and
NIV.

Step 1.3 A list number is assigned to each linked
list. Initially, the heading vertex number of each
linked list is broadcasted[5], and the list numbers
stored in an array LISTN[1..S[n]] are arranged in

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 101

131211109987655432211N

1716151413121110987654321

NIV

NOV

10987654321

13141012978653

15131211754321
16 17

Figure 2: Correspondence table N and new edges ar-
rays NOV and NIV.

ascending order by Parallel Merge Sort[6]. Then
the list numbers are serially renumbered from 1.
Next, we make a table of a source and a sink on
each linked list. Namely, the old vertex numbers
of a source and sink on each linked list are stored
in the arrays SO[1..L] and SI[1..L] respectively.
Here we let L be the maximum number of linked
lists, and L = O(n+m) because each linked list
has at least one new vertex. If sources or sinks
are sibling vertices, then only the heading sibling
old vertex number is stored. This step requires
O(log(n+m)) time and O(n+m) processors be-
cause the list numbers of new vertices are sorted.

Therefore, the complexity of Stage 1 requires
O(log(n + m)) time and O(n + m) processors.

As the result of Stage 1, the divided linked lists
and the arrays SO and SI are illustrated as Figure 3.
In this figure, the given graph is divided into 7 linked
lists. The number included in each circle is its new
vertex number, the squares represent the sibling ver-
tices, the subscript of each vertex is the old vertex
number and the numbers on the left side are list num-
bers.

2.2 Stage 2: Connect each source and sink to
make a disconnected graph strongly con-
nected

In the divided linked lists, each connected component
is composed of more than one linked list, and has at
least one source and sink. In this stage, initially the
boundary linked lists which separate connected com-
ponents are found, and at each boundary linked list, a
sink in each connected component and a source in the
next connected component are linked by searching the
table of arrays SO and SI. Subsequently, the given dis-
connected components are made into one connected
component. Next, the sink of the linked list with the
maximum list number and the source of the linked list
with the minimum list number are connected. At this
time, the given graph has one strongly connected com-

1

5

1

2

3

4

5

6

7

5
3

6
4

10
7

11
8

14
10

15
11

16
12

17
13

1

2

2

3

4

7

8

6
9

9

12

13

1312107064SI

1312118001SO

7654321

Figure 3: Divided linked lists and arrays SO and SI.

ponent. Finally the remaining unlinked sources and
sinks are linked with the minimum directed edges. At
the end of this stage, the given disconnected directed
graph is made into one strongly connected component
graph. This stage is composed of the following three
steps.

Step 2.1 The boundary linked lists which separate
connected components are found. Initially,
the maximum list number of sibling vertices
is calculated by the partial maximum parallel
algorithm[4] on an array LISTN[1..S[n]]. Then
the indivisual maximum list number of each
linked list is found by the doubling technique[4].
Finally, the maximum list number of each linked
list is corrected, so as to be not decreasing along
the number of each linked list. Then, if each
maximum list number is equal to its list num-
ber, its linked list is separate between one con-
nected component and the next connected com-
ponent, and it is marked. This step requires
O(log(n + m)) time and O(n + m) processors.

Step 2.2 All connected components in the given dis-
connected graph are linked according to the list
number, and made into one connected compo-
nent. We add each directed edge, which links
from a sink in a connected component to a source
in the next connected component on each bound-
ary found in Step 2.1. Here there is a case where
the boundary linked list does not have a sink, so
the array SI must be searched by the doubling

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 102

113120800AEI

1312100600AEO

7654321

Figure 4: Added edges in Step2.2.

1

5

1

2

3

4

5

6

7

5
3

6
4

10
7

11
8

14
10

15
11

16
12

17
13

1

2

2

3

4

7

8

6
9

9

12

13

Figure 5: Connected graph.

technique to find a sink with the nearest list num-
ber in the same connected component. Similarly,
there is a case where the next linked list of the
boundary linked list does not have a source, so
the array SO must be searched as the same as a
sink. Next, an edge which links from the sink
with the largest list number to the source with
the smallest list number is added. At this time,
the given graph has one strongly connected com-
ponent. The arrays AEI[1..L] and AEO[1..L]
are used to store the in-vertices and out-vertices
on the added directed edges, and already linked
sources and sinks are deleted from arrays SO and
SI respectively. Step 2.2 requires O(log(n+m))
time and O(n + m) processors.

In the example, Figure 4 shows the arrays AEO
and AEI representing the added edges in this
step. The marked index numbers represent the
boundaries of connected components found in
Step 2.1. Figure 5 also shows the connected
graph.

Step 2.3 The minimum directed edges are added to
link from the remaining unlinked sinks to the re-
maining unlinked sources, using the arrays SO
and SI. Initially, the vertex numbers with index
numbers in the arrays SO and SI are sorted re-
spectively to get together the remaining unlinked
sources and sinks. In order to make the num-
bers of sources and sinks even, if the number
of sources is smaller than the number of sinks,
fill the array SO with the vertex number of the
source which has the smallest list number found

0007004SI

00110000SO

7654321

Figure 6: Remaining unlinked sources and sinks.

74SI

(4)(1)(INDEX)

011SO

21

74SI

(4)(1)(INDEX)

111SO

21

1131218011AEI

1312107604AEO

7654321

Figure 7: New added edges.

in Step 2.2, or vice versa. Then a pair of each
directed edge in the arrays SO and SI is stored to
the arrays AEO and AEI according to the specific
index number(INDEX). Finally we obtain one
strongly connected component graph by adding
the directed edges in the arrays AEO and AEI
to the given disconnected directed graph. Step
2.3 requires O(log(n + m)) time and O(n + m)
processors because the arrays SO and SI must be
sorted.

In the example, Figure 6 shows the remaining un-
linked sources and sinks. Figure 7 shows the re-
sult of sorting and linking the remaining sources
and sinks, and also the new added edges.

Stage 2 requires O(log(n + m)) time and O(n +
m) processors.

Now, we will calculate the number of the added
edges in this stage. Let ncc be the number of the
given connected components. Again, let nso, nsi and
nis be the number of sources, sinks and isolated ver-
tices respectively. Then, in Step 2.2 the number of the
added edges is (ncc + nis - 1) + 1, and in Step 2.3 it is
max(nso - ncc, nsi - ncc). Namely,

added edges = (ncc + nis − 1) + 1
+ max(nso − ncc, nsi − ncc)

= max(nso, nsi) + nis

Accordingly, this expression satisfies Theorem 1.
Finally, we show the final result of the strongly

connected graph constructed by this parallel algorithm

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 103

1

5

1

2

3

4

5

6

7

5
3

6
4

10
7

11
8

14
10

15
11

16
12

17
13

1

2

2

3

4

7

8

6
9

9

12

13

1 2 4

3

5

11

9

78

10

12

13

6

Figure 8: Constructed strongly connected component
graph.

in Figure 8. The bold lines are the edges added in
Step 2.2 and the dotted bold lines are those added in
Step 2.3. In Figure 8, the given graph of the example
has 3 sources, 4 sinks and 2 isolated vertices, then the
number of the new added edges is 6. So 4+2=6 edges
satisfy Theorem 1.

3 Conclusion

We have proposed a parallel algorithm for finding
the minimum edges to make a disconnected directed
acyclic graph strongly connected. This parallel algo-
rithm requires O(log(n + m)) time and O(n + m)
processors On a CREW PRAM model.

This algorithm is an efficient parallel algorithm
because it requires at most O(n2) processors if the
given graph is a dense graph (m = O(n2)) and also
requires only O(n) processors if the given graph is
a sparse graph (m = O(n)). Moreover, the time
complexity of the known algorithm is O(log n) on
a CRCW PRAM model, while that of the proposed
algorithm is O(log(n + m)) on a CREW PRAM
model, therefore when compared with the identical
model, the proposed algorithm is more efficient than
the known algorithm.

References:

[1] Chandhui, P.: An O(log n) Parallel Algorithm
for Strong Connectivity Augmentation Prob-
lem, Int.J.Comput.Math., Vol.22,pp.187-197
(1987).

[2] Tada, A., Migita M. and Nakamura, R. ”Parallel
Topological Sorting Algorithm,” (in Japanese)
IPSJ Journal, Vol.45, No.4, pp.1102-1111
(2004).

[3] Migita, M., Tada, A., Itokawa, T. and Nakamura,
R. ”Parallel Algorithm for Determining Critical
Paths in PERT Chart,” (in Japanese) IPSJ Jour-
nal, Vol.47, No.7, pp.2212-2223 (2006).

[4] Gibbons A. and Rytter, W.: Efficient parallel al-
gorithm, pp.6-18, Cambridge University Press,
Cambridge (1988).

[5] Xavier, C. and Iyegar, S.S.: Introduction to Par-
allel Algorithms, pp.108-140, Wiley-inter sci-
ence (1998).

[6] Cole, R. ”Parallel Merge Sort,” SIAM J. Com-
put., Vol.17, No.4, pp.770-785 (1988).

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 104

	Text4:

