
Fuzzy approach to Semi-parametric sample selection model  
 

L. MUHAMAD SAFIIH 1*, A.A.BASAH KAMIL2,  M. T. ABU OSMAN 3 
1, 3Mathematics Department 

Faculty of Science and Technology, University Malaysia Terengganu 
21030 Kuala Terengganu, Terengganu,  MALAYSIA.   

       
 

2School of Distance Learning  
Universiti Sains Malaysia 

11800 USM Penang, MALAYSIA.  
   

 
 

Abstract: The sample selection model studied in the context of semi-parametric methods. With the deficiency of the 
parametric model, such as inconsistent estimators etc, the semi-parametric estimation methods provide the best 
alternative to handle this deficiency. Semi-parametric of a sample selection model is an econometric model has 
been found interesting application in empirical studies. The issue of uncertainty and ambiguity still become are 
major problem and complicated in the modeling of semi-parametric sample selection model as well as its 
parametric. In this study, we will focus in the context of fuzzy concept as a hybrid to the semi-parametric sample 
selection model. The best approach of accounting for uncertainty and ambiguity is to take advantage of the tools 
provided by the theory of fuzzy sets. It seems particularly appropriate for modeling vague concepts. Fuzzy sets 
theory and its properties through the concept of fuzzy number provide an ideal framework in order to solve the 
problem of uncertainty data. In this paper, we introduce a fuzzy membership function for solving uncertainty data 
of a semi-parametric sample selection model.  
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1.   Introduction 

The sample selection model studied in the 
context of semi-parametric methods. With the 
deficiency of the parametric model, such as 
inconsistent estimators etc, the semi-parametric 
estimation methods provide an alternative to handle 
this deficiency. The study of semi-parametric 
econometrics of the sample selection models has 
received considerable attention from statisticians as 
well as econometricians in the late of 21st century (see  
Schafgans, 1996). The termed “semi-parametric,” 
used as a hybrid model for the selection models, 
which do not involve parametric forms on error 
distributions; hence, only the regression function part 
of the model of interest is used. Consideration based 
on two perspectives, firstly; no restriction of 
estimation of the parameters of interest for the  

 
 
 
 
distribution function of the error terms, secondly; 
restricting the functional form of heteroskedasticity 
to lie in a finite-dimensional parametric family 
(Schafgans,1996).  
 

Cosslett (1990) considered semi-parametric 
estimation of two-stage method similar to Heckman 
(1976) for the bivariate normal case where the first 
stage consisted of semi-parametric estimation of 
binary selection model and the second stage 
consisted of estimating the regression equation. 
Ichimura and Lee (1990) proposed an extension of 
applicability of a semi-parametric approach. It was 
proven that all models can be represented in the 
context of multiple index frameworks (Stoker, 1986) 
and shown that it can be estimated by the semi-
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parametric least squares method if identification 
conditions are met (see also, Klein and Spady (1993), 
Gerfin (1996), Martins (2001), Khan and Powell 
(2001)). Frankly speaking, the previous study in this 
area concentrates on sample selection model used 
parametric, semi-parametric or nonparametric 
approaches. More specifically, none of these 
researchers put efforts into studies that analyzed semi-
parametric sample selection models in the context of 
fuzzy environment like fuzzy sets, fuzzy logic or 
fuzzy sets and systems (M.Safiih (2007)). 
 

The purpose this paper is to introduce a 
membership function of a sample selection model in 
which historical data contains some uncertainty. With 
this, provides an ideal framework to deal with 
problems in which there does not exist a definite 
criterion for discovering what elements belongs or do 
not belongs to a given set. Fuzzy set defines by a 
fuzzy sets in a  universe of discourse U is 
characterized   by a membership function denoted by 
the function μA maps all elements of U that take the 
values in the interval [0,1] that is ]1,0[: →XA  
(Zadeh, 1965). The concept of fuzzy sets by Zadeh is 
extended from the crisp sets, that is the two-valued 
evaluation of 0 or 1, {0, 1}, to the infinite number of 
values from 0 to 1, [0, 1]. (see Terano et.al. 1994). 
 
 
2 Representation of uncertainty 
 
 

Generally, fuzzy number represents an 
approximation of some value which is in the intervals 
terms )()()()( ],,[ llll dcdc ≤ for l  0,1,.., n , is given by 
the α - cuts at the α -levels lµ with 

0, 01 =∆+= − μμμμ ll  and 1=nμ , usually 
provide a better job set to compare the corresponding 
crisp values. As widely practiced used, each α-cuts 

Aα  of fuzzy set A  are closed and related with 
interval of real numbers of fuzzy numbers for 
all ]1,0(∈α  and based on the coefficient :)(xA if 

αAα ≥  then 1=Aα  and if αAα <  then 
0=Aα which is the crisp set Aα  depends on α . 
 

Closely related with a fuzzy number is the concept of 
membership function. In this concept, the element of 
a real continuous number in the interval [0,1] or in 

other word representing partial belonging or degree 
of membership are used. The triangular membership 
function is used. These represented as a special form 
as: 
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From that function, the α -cuts of a triangular fuzzy 
number can be define as a set of closed intervals as 
  

]1,0(],)(,)[( ∈∀+−+− αnαdncαcn       (2) 
 
and the graph of a typical membership function is 
illustrated in Figure 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the membership function )(xAµ , the 
assumptions are as follows: 
(i) monotonically increasing function for 

membership function )(xμA  with 
0)( =xμA  and 1)(lim =

∞→
xμAx

 for nx ≤  

(ii) monotonically decreasing function for 
membership function )(xAµ with 

1)( =xAµ  and 0)(lim =
∞→

xμAx
 for nx ≥  
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)(xAµ  

Figure 1:  A triangular fuzzy number 
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3 The α -cuts representation of 
fuzzy number  

 
 Before going deeper into fuzzy modeling of 

PSSM, an overview some definitions are presented 
(Yen et.at. (1999), Chen and Wang (1999)) used in 
this study is related to the existence fuzzy set theory 
introduced by Zadeh’s(1965). The definitions and 
properties are as follows: 
 
Definition 1: the fuzzy function is defined by 

),~,(~;~~: AxfYYAXf =→× where 
1)  Xx ∈ ; X is a crisp set; 
2) A~  is a fuzzy set, and 
3) Y~ is the codomain of x associated with the 
fuzzy set A~  
 

Definition 2: Let )(ℜ∈ FA be called a fuzzy number 
if: 

1) exist ℜ∈x  such that 1)( =xAµ  
2) for any ]1,0[∈α  

 
])(,[ axxA A ≥=

α
µα , is a closed interval with 

)(ℜF represents all fuzzy sets, ℜ is the set of real 
numbers.  
 
Definition 3: define a fuzzy number A  on ℜ  to be a 
triangular fuzzy number if its membership function 

]1,0[:)( →ℜxμA  is equal to  
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where uml ≤≤ , x  is a model value with l  and u  
be a lower and upper bound of the support of  A  
respectively. Then the triangular fuzzy number 
denoted by ),,( uml . The support of A is the set 
elements }|{ umlx <<ℜ∈ . A non-fuzzy number by 
convention occurred when .uml ==   

Theorem 1: The values of estimator coefficients of 
the participation and structural equations for fuzzy 
data converge to the values of estimator coefficients 
of the participation and structural equations for non-
fuzzy data respectively whenever the value of 

cut−α tend to 1 from below. 
 
Proof. From the centroid method that followed to get 
the crisp value, the fuzzy number for all observation 
of iw  as 

( ))()(
3
1

iiiic wUbwwLbW ++=  

when there is no utc−α . The lower bound and 
upper bound for each observation referred to by the 
definition 3 above. 
 
Since we follow the triangular membership function, 
is followed see Figure 4.2, then ( )α= α ),( )(iwLbA  
and ( )α= α ),( )(iwUbB   
where  

( ))()()( )( iiii wLbwwLbwLb −α+=α   
and 
 

( ))()()( )( iiiαi wUbwαwUbwUb −+=

 
 
 
Applying the utc−α  into the triangular 
membership function, the fuzzy number is obtained 
that depends on the given value of the utc−α  over 
the range 0 and 1 is as follow:
 

iw  )( iwUb  )( iwLb  

B A 

1 

cut−α  

 

Figure 2: Membership function and α -cut 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          309



( ) ( )

.
3

)()(
3

)()()()(

)()(

)(

αα

α

αα

iii

iiiiiii
ic

wUbwwLb

wUbwwUbwwLbwwLbW

++
=

−+++−+
=

 
When α  approaches 1 from below then 

ii wwLb →)( )(α  and ii wwUb →)( )(α . Further 

obtained is i
iii

ic wwwwW =
++

→
3)(α  , 

iic wW →)(α . 
 

The last equation states that when α  approaches 1 
from below then iic wW →)(α .  Similarly, for all 

observations ix  and iz , iic xX →)(α   and 

iic zZ →)(α  respectively, as α  tends to 1 from 
below. This implies that the values of estimator 
coefficients of the participation and structural 
equations for fuzzy data converge to the values of 
estimator coefficients of the participation and 
structural equations for non-fuzzy data respectively 
whenever the value of cut−α tend to 1 from below.
                 � 
 
Definition 4: LR-type fuzzy number denoted as Y~  

with functions )))(1(()( 1 YY
β

fYL C −= and 

)))(1(()( 2 CYY
γ

fYR −= . Y~  consist the lower bound 

)( LY , center )( CY  and upper bound )( UY and 
satisfying )(0)()( minαYRYL UL == and 

)(1)()( maxαYRYL CC == . The size of Y~ is LU YY −  
where minα and maxα can be any predetermined 
levels.  
 
 
 
 
 
 
 
 

4 Development of Fuzzy Semi-

parametric of Sample Selection 
Models 

 
Before constructing a fuzzy SPSSM, first, the 

sample selection model purposed by Heckman 
(1976) considered. In SPSSM, it is assumed that the 
distributional assumption of ),( ii uε is weaker than 
the distributional assumption of the parametric of 
sample selection model. Then, the sample selection 
model is now called a semi-parametric of sample 
selection model (SPSSM).  

 
In the development of SPSSM modeling using 

fuzzy concept, as a development of fuzzy PSSM, the 
basic configuration of fuzzy modeling i.e. involved 
fuzzification, fuzzy environment and defuzzification 
(see M.Safiih 2007).  For fuzzification stage, an 
element of real-valued input variables converted in 
the universe of discourse into value of membership 
fuzzy set. At this approach, a triangular fuzzy 
number used over all observations. The α  - cut 
method with increment value of 0.2 started with 0 up 
to 0.8. This is then applied to the triangular 
membership function to get a lower and upper bound 
for each observations ( ii wx ,  and )∗

iz  which is 
defined as 

 
),,(~),,,(~

iuimilspiiuimilspi xxxxwwww == and 

),,(~
iuimilspi zzzz =∗                  (3) 

 
In order to solve the model in which occurs 

uncertainties, fuzzy environment such as fuzzy sets 
and fuzzy number are more suitable, as the 
processing of the fuzzified input parameters. Since, 
it is assumed that some original data contains 
uncertainty, under the vagueness of the original data, 
the data will then be considered as fuzzy data. That 
means, each observation considered has are variation 
values.  The upper bound and lower bound of the 
observation are commonly chosen depending on the 
each data structure and experience of the 
researchers. For a large sized of observation, the 
upper bound and lower bound of each observation 
are quite difficult to be obtained.  
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Based on the fuzzy number, a fuzzy SPSSM is built 
with the form as: 
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The terms 

spiw~ , 
spix~ , ∗

spiz~ , 
spiε~  and 

spiu~  are fuzzy 

numbers with the membership functions 
spiW~µ , 

spiX~µ , 

spiZ~µ , 
spiεµ~  and 

spiu~µ , respectively. Since the 

distributional assumption for the SPSSM is weak, 
then for the analysis of the fuzzy SPSSM, it is 
assumed that the distributional assumption is weak.  
 
To find an estimate for γ  and β  of the fuzzy 
parametric of sample selection model, one idea is to 
defuzzify the fuzzy observations 

spiW~ , 
spiX~  and ∗

spiZ~ . 
That means, converting this triangular fuzzy 
membership real-value into a single (crisp) value (or a  
vector of values) that, in the same sense, is the best 
representative of the fuzzy sets that will actually be 
applied.  Centroid method or the center of gravity 
method is used i.e. computes the outputs of the crisp 
value as the center of area under the curve.  Let 

spicW , 

icspX   and  ∗
spicZ  be the defuzzified values of 

spiW~ , 

spiX~  and ∗
spiZ~  respectively. The calculation of the 

centroid method for 
spicW , 

spicX   and  ∗
spicZ  

respectively via the following formula: 
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Then the crisp values for the fuzzy observation are 
calculated following the centroid formula as stated 
above. To estimate spγ  and spβ  of SPSSM 
approach, applying the procedure as in Powell, then 
the parameter is estimated for the fuzzy semi-
parametric sample selection model (fuzzy SPSSM). 
Before getting a real value for the fuzzy SPSSM 
coefficient estimate, first the coefficient estimate 
values of γ  and β  are used as a shadow of 

reflection to the real one.  The value of γ̂  and β̂  are 
then applied to the parameters of the parametric 
model to get a real value for the fuzzy SPSSM 
coefficient estimate of 

spispi uspsp ,,, εσβγ . The Powell 

SPSSM procedure is then executed using the 
XploRe software. 
 

Executing the Powell (Powell, 1987) procedure 
by XploRe  takes the data as input from the outcome 
equation ( x  and y , where x  may not contain a 
vector of ones). The vector id containing the 
estimated for the first-step index β̂'

spix , and the 
bandwidth vector h where h is the threshold 
parameter k that is used for estimating the intercept 
coefficient from the first element. The bandwidth h 
from the second element is used for estimating the 
slope coefficients. For fuzzy PSSM, follows the 
above procedure then another set of crisp 
values

spicW , 
spicX  and 

spicZ is obtained. Applied the 

α  - cut values on the triangular membership 
function of the fuzzy observations 

spiW~ , 
spiX~  and 

spiZ~   with the original observation, fuzzy data 
without α  - cut and fuzzy data with α  - cut to 
estimate the parameters of the fuzzy SPSSM. The 
same procedure above is applying. The parameters 
of the fuzzy SPSSM are estimated.  
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5 Conclusion 
 

Basically, modeling take as an important part in 
estimating the parameters of economic problems. 
Differing from other system design, the model itself is 
generated by a mathematical function. In this paper, a 
description of the development of the FSPSSM has 
been presented. For handling the uncertainty which is 
involved in the original data, fuzzy number together 
with membership function takes an important part 
derived from expert knowledge.  
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