
Boundedness of a Batch Gradient Method with Penalty for
Feedforward Neural Networks

HUISHENG ZHANG1,2, WEI WU1,2

1Department of Mathematics
Dalian Maritime University

Dalian, China, 116026
wuweiw@dlut.edu.cn

MINGCHEN YAO2

2Department of Applied Mathematics
Dalian University of Technology

Dalian, China, 116023

Abstract: This paper considers a batch gradient method with penalty for training feedforward neural networks. The
role of the penalty term is to control the magnitude of the weights and to improve the generalization performance
of the network. An usual penalty is considered, which is a term proportional to the norm of the weights. The
boundedness of the weights of the network is proved. The boundedness is assumed as a precondition in an existing
convergence result, and thus our result improves this convergence result.

Key–Words: Batch gradient method; Feedforward neural network; Boundedness; Penalty

1 Introduction

We are concerned in this paper with the batch gradient
method with penalty for training feedforward neural
networks. The penalty term is often introduced into
the network training algorithms so as to control the
magnitude of the weights and to improve the general-
ization performance of the network [1, 2]. An usual
penalty is considered, which is a term proportional to
the norm of the weights. It is generally agreed, but
not mathematically proved as far as we know, that the
weights of the network will keep bounded in the train-
ing process. The aim of this short note is to prove the
boundedness.

Wu et. al. [3] considered a batch gradient method
with penalty for training feedforward neural networks,
and proved a convergence theorem under a condition
that the weights between the hidden and input layers
were bounded during the training process. This pre-
condition is difficult to check in practice and limits the
applicability of their results. We will show that the
weights are indeed bounded in this case, and hence
the boundedness condition in [3] is not necessary.

The rest of this paper is organized as follows. The
network model and the batch gradient method with
penalty are described in the next section. A conver-
gence result in [3] mentioned above is cited in Section
3 for comparison with our result. Section 4 presents
the main results of the paper. In this paper, the nota-
tion ‖ · ‖ denotes the Euclidean vector norm.

2 Batch gradient method with
penalty

Consider a three-layer network consisting of p in-
put nodes, q hidden nodes, and 1 output node. Let
w0 = (w01, w02, · · · , w0q)T ∈ Rq be the weight vec-
tor between all the hidden units and the output unit,
and wi = (wi1, wi2, · · · , wip)T ∈ Rp be the weight
vector between all the input units and the hidden unit
i (i = 1, 2, · · · , q). To simplify the presentation,
we write all the weight parameters in a compact form,
i.e., W = (wT

0 , wT
1 , · · · , wT

q)T ∈ Rq+pq and we de-
fine a matrix V = (w1, w2, · · · , wq)T ∈ Rq×p. Let
g : R → R be a transfer function for the hidden and
output nodes, which is typically, but not necessarily, a
sigmoid function. We define a vector function for any
x = (x1, x2, · · · , xq) ∈ Rq as follows

G(x) =
(
g(x1), g(x2), · · · , g(xq)

)T
. (1)

For an input vector ξ, the output of the network is

ζ = g(w ·G(V ξ)). (2)

Suppose that {ξj , Oj}J
j=1 ⊂ Rp×R is a given set

of training samples. The error function with penalty
(see [1, 3, 5]) is defined as

E(W) =
1
2

J∑

j=1

(
Oj − g(w0 ·G(V ξj))

)2 + λ‖W‖2

=
J∑

j=1

gj

(
w0 ·G(V ξj)

)
+ λ‖W‖2, (3)

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 175

where gj(t) := 1
2

(
Oj − g(t)

)2. The gradient of the
error function is given by

EW (W) =
(
ET

w0
(W), ET

w1
(W), · · · , ET

wq
(W)

)T

(4)

with

Ew0(W) =
J∑

j=1

g′j
(
w0 ·G(V ξj)

)
G(V ξj) + 2λw0,

Ewi(W) =
J∑

j=1

g′j
(
w0 ·G(V ξj)

)
w0ig

′(wi · ξj)ξj

+ 2λwi, i = 1, 2, · · · , q.

Starting from an arbitrary initial value W 0, the
weights {Wn} are updated iteratively by (cf. [3, 6])

Wn+1 = Wn + ∆Wn, n = 0, 1, 2, · · · (5)

with

∆wn
0 = −η

[J∑

j=1

g′j(w
n
0 ·G(V nξj))G(V nξj) + 2λwn

0

]
,

∆wn
i = −η

[J∑

j=1

g′j(w
n
0 ·G(V nξj))wn

0ig
′(wn

i · ξj)ξj

+ 2λwn
i

]
, i = 1, 2, · · · , q.

where the learning rate η > 0 is a constant.

3 A convergence result in [3]

Let us recall the convergence result in [3] so as to
compare with our results. The main assumptions in
[3] are as follows:
Assumption (A1) |g(t)|, |g′(t), |g′′(t)| are uni-
formly bounded for t ∈ R.
Assumption (A2) ‖wn

0 ‖ (n = 0, 1, 2, . . .) are uni-
formly bounded.
Assumption (A3) η and λ are chosen to satisfy
0 < η < 1

λ+C1
, where

C1 = J(1 + C2)C3 max{C2, C5}+
1
2
J(1 + C2)C3

+
1
2
JC2

3C2
4C5,

C2 = max
{√

qC3, (C3C4)2
}
,

C3 = max
{

sup
t∈R

|g(t)|, sup
t∈R

|g′(t)|, sup
t∈R

|g′′(t)|,

sup
t∈R,1≤j≤J

|g′j(t)|, sup
t∈R,1≤j≤J

|g′′j (t)|},

C4 = max
1≤j≤J

‖ξj‖, C5 = sup
n∈N

‖wn
0 ‖. (6)

Assumption (A4) There exists a closed bounded re-
gion Φ such that {Wn} ⊂ Φ, and the set Φ0 = {W ∈
Φ : EW (W) = 0} contains only finite points.

The following convergence theorem is proved in
[3].

Theorem 1 [3] Suppose that the error function is
given by (3), that the weight sequence {Wn} is gen-
erated by the algorithm (5) for any initial value W 0,
and that Assumptions (A1)−(A3) are valid. Then we
have
(a) E(Wn+1) ≤ E(Wn), n = 0, 1, 2, · · · ;
(b) There is E∗ ≥ 0 such that limn→∞E(Wn) =
E∗;
(c) There is M > 0 such that ‖V n‖ ≤√

1
λE(Wn) ≤ M for all n = 0, 1, 2, · · · ;

(d) limn→∞
∥∥∆Wn

∥∥ = 0, limn→∞
∥∥EW (Wn)

∥∥ =
0.
Moreover, if Assumption (A4) is valid, then we have
the strong convergence:
(e) There exists W ∗ ∈ Φ0 such that limn→∞Wn =
W ∗.

As a relative reference, we mention a similar re-
sult [4] for an online gradient method for training a
feedforward network without hidden layer.

4 Main results
Our main result is the following boundedness theo-
rem.

Theorem 2 Suppose that the weight sequence {Wn}
is generated by the algorithm (5) for any initial value
W 0, that Assumptions (A1) is valid, and that 0 <
2λη < 1. Then, {Wn} is uniformly bounded, i.e.,
there exists a constant C6 > 0 such that

‖Wn‖ ≤ C6, ∀n = 0, 1, · · · . (7)

Proof: (7) is equivalent to the existence of constants
C7 and C8 such that for any nonnegative integer n

‖wn
0 ‖ ≤ C7, (8)

‖wn
i ‖ ≤ C8, i = 1, 2, · · · , q (9)

First, we show (8). By 0 < 2λη < 1, we have

0 < 1− 2λη < 1. (10)

By (5), we have

wn+1
0 = (1− 2λη)wn

0

− η
J∑

j=1

g′j(w
n
0 ·G(V nξj))G(V nξj). (11)

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 176

(10) and (11) result in

‖wn+1
0 ‖ ≤ (1− 2λη)‖wn

0 ‖

+ η
J∑

j=1

|g′j(wn
0 ·G(V nξj))|‖G(V nξj)‖.

(12)

By Assumption (A1), there is a constant C9 > 0 such
that for all n = 0, 1, · · · ,

J∑

j=1

|g′j(wn
0 ·G(V nξj))|‖G(V nξj)‖ ≤ C9. (13)

We proceed to prove (8) by considering the fol-
lowing two cases.

Case (i): For any n (n ≥ 0), the inequality
‖wn

0 ‖ ≤ C9
λ always holds. In this case, one can simply

set C7 = C9
λ to validate (8).

Case (ii): There exists an integer N (N ≥ 0) such
that

‖wN
0 ‖ >

C9

λ
. (14)

In this case, we can prove by induction on n that

‖wn
0 ‖ ≤ ‖wN

0 ‖+ C9, ∀n = N, N + 1, · · · . (15)

(15) is evidently valid for n = N . So we suppose that
(15) is valid for an integer n (n ≥ N), and we try to
show that (15) is also valid for n + 1.

If ‖wn
0 ‖ < C9

λ , by (10), (12) and (13) we have

‖wn+1
0 ‖ ≤ (1− 2ηλ)‖wn

0 ‖+ ηC9

≤ (1− 2ηλ)
C9

λ
+ ηC9

≤ C9

λ
≤ ‖wN

0 ‖ ≤ ‖wN
0 ‖+ C9. (16)

On the other hand, if ‖wn
0 ‖ ≥ C9

λ , a combination of
(10), (12), (13) and (14) produces

‖wn+1
0 ‖ ≤ (1− 2ηλ)‖wn

0 ‖+ ηC9

≤ (1− 2ηλ)‖wn
0 ‖+ ηλ‖wn

0 ‖
= (1− ηλ)‖wn

0 ‖
≤ ‖wN

0 ‖+ C9. (17)

Now we have shown by induction that (15) is al-
ways true in this case. Hence, (8) is valid for Case (ii)
by setting

C7 = max{‖w0
0‖, ‖w1

0‖, · · · , ‖wN−1
0 ‖, ‖wN

0 ‖+C9}.
So (8) is true in both cases (i) and (ii), and the

proof to (8) is completed.

With the help of (8), now we can prove (9). By
(5), we have

wn+1
i = (1− 2λη)wn

i

− η

J∑

j=1

g′j(w
n
0 ·G(V nξj))wn

0ig
′(wn

i · ξj)ξj ,

i = 1, 2, . . . , q.

This gives

‖wn+1
i ‖ ≤ (1− 2λη)‖wn

i ‖

+ η

J∑

j=1

|g′j(wn
0 ·G(V nξj))wn

0ig
′(wn

i · ξj)|‖ξj‖,

i = 1, 2, . . . , q.

Due to (8) and Assumption (A1), there is a constant
C10 > 0 such that for any n = 0, 1, · · · and i =
1, 2, · · · , q,

J∑

j=1

|g′j(wn
0 ·G(V nξj))wn

0ig
′(wn

i · ξj)|‖ξj‖ ≤ C10.

Now, the remaining part of the proof to (9) can copy
the corresponding proof to (8). The detail is omitted.

Finally we write C6 =
√

C7
2 + qC8

2 to obtain
for any nonnegative n that

‖Wn‖ =
√
‖wn

0 ‖2 + ‖wn
1 ‖2 + · · ·+ ‖wn

q ‖2

≤
√

C7
2 + qC8

2 = C6

This completes the proof. ¤
The condition 0 < 2λη < 1 is required for the

above boundedness result. This is not a restrictive
condition. In practice, the learning rate η and the
penalty parameter λ are small and satisfy 0 < 2λη <
1 easily. On the other hand, if C1 > λ, which is very
likely the case, then the condition 0 < 2λη < 1 re-
sults from the condition 0 < η < 1

λ+C1
in Assump-

tion (A3).
Thanks to Theorem 2, we can improve the exist-

ing convergence result Theorem 1 by cutting out As-
sumption (A2).

Theorem 3 Suppose that the error function is given
by (3), that the weight sequence {Wn} is generated
by the algorithm (5) for any initial value W 0, that 0 <
2λη < 1, and that the assumptions (A1) and (A3) are
valid. Then we have
(a) E(Wn+1) ≤ E(Wn), n = 0, 1, 2, · · · ;
(b) There is E∗ ≥ 0 such that lim

n→∞E(Wn) = E∗;

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 177

(c) There is M > 0 such that ‖Wn‖ ≤ M for all
n = 0, 1, 2, · · · ;
(d) lim

n→∞
∥∥∆Wn

∥∥ = 0, lim
n→∞

∥∥EW (Wn)
∥∥ = 0.

Moreover, if Assumption (A4) is valid, then we have
the strong convergence:
(e) There exists W ∗ ∈ Φ0 such that lim

n→∞Wn =
W ∗.

Proof: A combination of Theorems 1 and 2 immedi-
ately leads to the conclusion. ¤

References:

[1] G. Hinton, Connectionist learning procedures,
Artificial Intelligence 40(1989)185-243.

[2] S. Loone and G. Irwin, Improving neural net-
work training solutions using regularisation,
Neurocomputing 37(2001)71-90.

[3] W. Wu, H.M. Shao and Z.X. Li, Convergence
of batch BP algorithm with penalty for FNN
training, Lecture Notes in Computer Science
4232(2006)562-569.

[4] H. Shao, W. Wu and L.J. Liu, Convergence and
monotonicity of an online gradient method with
penalty for neural networks WSEAS Transac-
tions on Mathematics 6:3(2007)469-476.

[5] S. Haykin, Neural Networks: A Comprehensive
Foundation. 2nd edition, Tsinghua University
Press and Prentice Hall, Beijing, 2001.

[6] W. Wu, G. Feng, Z. Li and Y. Xu, Determinis-
tic Convergence of an Online Gradient Method
for BP Neural Networks, IEEE Transactions on
Neural Networks 16(2005)533-540.

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007 178

	Text4:

