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Abstract: - This paper describes the use of Mean/Variance multistage portfolio management for building 
efficient frontiers. The maximization of the returns yields the maximum and the variance minimization the 
minimum points in the efficient frontier. The efficient frontier is the graph describing all the optimal options 
between these two points. The intermediate points are obtained minimizing the variance (risk measure) subject 
to different percentages of the maximum utility expected. According to the investor’s characteristics, a point in 
the graph, containing a complete set of investment strategies can be chosen. The stochastic quadratic and linear 
models use a scenario tree to represent the multistage discretization of the random returns. The examples are 
applied to the Mexican bursaries market. 
 
Key-Words: - Portfolio Management, Stochastic Programming, Mean/Variance Optimization. 
 
1   Introduction 
In portfolio management, stochastic programming is 
used to get an efficient frontier with all possible 
combinations of returns (represented by the mean) 
and risk levels (represented by the variance) subject 
to constraints specified by the investor and taking 
into account the possible fluctuation of the assets 
return in the future (Trippy et al. [5]). The uncertainty 
on return values of instruments is represented by a 
discrete approximation in a scenario tree. 

The Stochastic Linear Programming model (SLP 
maximizes the expected wealth at the end of the 
investment horizon, represented by the man of the 
scenario tree. Expected wealth is calculated as the 
total net redemption value at time period T. The 
solution of the pure SLP problem represents the 
maximum amount of money that an investor can 
obtain when the person is risk seeker and it is 
considered the 100% risk option. 

The Stochastic Quadratic Programming model 
(SQP), named the Markowitz model, minimizes the 
variance in the scenario tree. The variance is used as 
a risk measure and the pure SQP model will yield the 
minimum return that the investor can expect, and it is 
considered the 0% risk level. The intermediate points 
are calculated with the stochastic quadratic model 
(SQP), but including a constraint forcing the net 
redemption value to be a percentage of the mean 
obtained with the SLP model. The graph containing 
all points is named the efficient frontier. The model is 
multistage because it uses the wealth generated in the 

previous period in order to represent the constraint in 
the next period and stochastic because uses a scenario 
tree, including all possibilities of the future, with its 
respective probability, instead of single return values. 

The main concern of this paper is to obtain an 
efficient frontier that allows the investor to find the 
risk level appropriate to their age, characteristics and 
risk aversion/seeking level to choose the 
corresponding point in the efficient frontier in order 
to get the right investment policy. The randomized 
returns distribution is represented by a scenario tree 
generated with clustering and simulation and the 
linear and quadratic optimization models are solved 
with the models including specific constraints. 

We present the Stochastic Programming models 
for Mean/Variance analysis in section 2, including 
the way the scenario tree was generated. In section 3, 
we describe the efficient frontier and the procedure to 
generate it. In section 4, we present two examples and 
the conclusions are exposed in section 5. Tables with 
data and results are presented at the end. 

 
 

2   Stochastic Programming Portfolio 
Models 

The main definitions used in the rest of the paper are: 
Portfolio: A set of assets available for the 

investor. 
Assets: The assets considered are equities in the 

Mexican bursaries market (BMV), available for the 
constitution of a portfolio distribution. 

12th WSEAS Int. Conf. on APPLIED MATHEMATICS, Cairo, Egypt, December 29-31, 2007          241



Returns: Percentage of returns in the form of 
dividends for equities. 

Net Redemption Value: Total amount of money 
received at the end of the horizon when the 
investment is encashed. 

The notation is described in Table 1. 
 

Table 1 Notation 
Symbols and Input Data 
1 ≡ (1,1,1, …, 1)′  
p′q ≡ p1q1 +  p2q2 +  … +  pnqn (Inner product) 
e ≡ (s,t) index denoting an event (a node of the 

scenario tree) 
a(e) ancestor of event e (parent in the scenario 

tree) 
Λr ∈ ℜ nxn covariance matrix of returns 
Nt set of nodes of the scenario tree at time t 
pe branching probability of event e: pe = 

Prob[e⏐a(e)] 
Pe probability of event e: if e = (s,t), then Pe = 

∏i = 1 …t p(s,i) 
n number of investment assets 
M amount of initial investment 
T investment planning horizon 
TWt total withdrawal at time t 
ici percentage paid in initial cost for asset i 
aci percentage paid in annual cost for asset i 
rie dividends or income returns for asset i at 

node e 
tc transaction cost 
wu

ie upper bound for asset i 
Decision Variables 

NR net redemption value 
w* amount of money held in each  asset 
h* withdrawal 
b* amount bought of each asset  
s* amount sold of each asset 
 
2.1 Scenario Trees and Uncertainty 

Representation 
Generating scenario trees is important for the 
performance of the multistage stochastic 
programming. The root node of the scenario tree 
represents the decision “today” and the nodes further 
on represent conditional decisions at later stages. The 
arcs linking the nodes represent various realizations 
of the uncertain variables. The dynamics of decision 
making is thus captured as decisions and adjusted 
according to realizations of uncertainty. The 
discretization of the random values and the 
probability space leads to a framework in which a 
random variable takes finitely many values. At each 
time period, new scenarios branch from the old, 
creating a scenario tree. Scenario trees can be 

generated based on different probabilistic approaches 
as simulation or optimization as presented in 
Gülpinar et al. [2].  

Due to the recourse nature of the multistage 
problem, decision variables wt, bt, and st are 
influenced by previous stochastic events ρ t, and 
hence wt = wt(ρ t), bt = bt(ρ t) and st = st(ρ t). 
However, for simplicity, we shall use the terms wt, bt, 
and st, and assume their implicit dependence on ρ t. 
Thus, the factors driving the risky events are 
approximated by a discrete set of scenarios or a 
sequence of events. Given the event history up to a 
time t, ρ t, the uncertainty in the next period is 
characterized by finitely many possible outcomes for 
the next observation ρt+1. Each node e ∈ Nt at a level 
t = 1, …, T corresponds to a decision {we, be, se} 
which must be determined at time t, and depends in 
general on ρ t and the past decisions {wj, bj, sj}, for j 
= 1, …, t – 1. The scenario tree is the input to the 
financial optimization problem. The We used a 
binary tree generated with a clustering and simulation 
procedure; the main steps needed to generate the 
scenario are described in Osorio et al. [3].  

 
2.2 Stochastic Linear Programming  model 

(SLP) 
The Stochastic Linear Programming (SLP) model 
maximizes the expected wealth at the end of the 
investment horizon. Expected wealth is calculated as 
the total net redemption value at time period T.  

The redemption value is basically defined as the 
amount of money received at time T when the 
investment is encashed. The basic LP model only 
includes constraints to express the wealth return and 
cash balance. We added annual bank fees, transaction 
costs for purchase operations, the withdrawal variable 
in the wealth return equation, the total withdrawal 
(TWt) equation in the model and the upper bounds on 
the assets amount in a diversification constraint in 
order to obtain a more complete and descriptive 
model. The constraints in the SLP model are:  
Net Redemption Value of every asset.  (1) 
Initial Allocation.    (2) 
Cash Balance Equations.   (3) 
Wealth for asset i in node e.   (4) 
Total Withdrawal at time t.   (5) 
Diversification constraints   (6) 

The objective function is the sum of the net 
redemption values of every asset at the end of the 
complete horizon, i.e. the net amount of money that 
the investor can obtain when the total investment is 
encashed. The general expression for the multistage 
portfolio optimization model is: 
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                        max Σi=1,n NRi . 
Subject to 

NRi = Σe∈NT Pe [1′ wie]    i=1,…,n              (2) 

Σi=1,n1′wi0 = M                                           (2) 

1′bie – 1′sie = 0  (3)   e∈Nt,t=1,…,T, i=1,…,n (3) 

wie = (1−aci)[(1+rie)wia(e)]−hie +(1–tc)bie–sie (4) e∈Nt,t=1,…,T,i=1, …, n (4) 

TWt = Σe∈Nt Pe Σi=1,n 1′hie,t=1,…,T (5) 

Σi=1,n wie ≤ wu
ie Σi=1,n (1′wie)e∈Nt,t=1,…,T (6) 

NRi ≥ 0,i=1,…,n (7) 

wie, bie, sie ≥ 0, e∈Nt,t=1,…,T,i=1, …,n (8) 

 
Notice that the annual bank fees deducted by term (1–
aci) for i = 1, …, n must be augmented by the bank’s 
initial setup fees in the first year. For children of the 
root scenario node, e ∈ N1, the term becomes (1 – ici – 
aci), and is imposed on all constraints. The wealth in 
every period t for asset i, is Σe∈Nt Pe (1′wie), for 
i=1,…,n, and t=1,…,T. The total wealth in for every 
period can be evaluated as Σe∈Nt Pe Σi=1,n 1′wie , for 
t=1,…,T. 
 
2.3 Stochastic Quadratic Programming  

model (SLP) 
The SQP approach attempts to inject risk aversion into 
the optimization model. It incorporates the quadratic 
variance term and permits the minimization of the 
variability of the terminal wealth given observed 
statistics. This ensures a degree of risk aversion by the 
investor by relaxing the certainty of the return values 
along a given leaf of the scenario tree. 

The variance of wealth at time t of a particular 
asset i can be calculated as 

 
Var[1′wi

t]  = Var [(rirt)′wi
t−1] 

= E [((rirt)′wi
t−1)2] − (E[(rirt)′wi

t−1]) 2 

≡ E [((rirt)′wi
t−1) 2] 

= E [wi′
t−1 (rirt) (rirt)′ wi

t−1)] 

= E [wi′
t−1 ((ri)2 Λr) wi

t−1)]    

= Σe∈Nt Pe [wi′
a(e) ((ri)2 Λr) wi

 a(e))] 

Where ri is a scalar factor to returns. Notice that 
for any random vector y, E[yy′] is equivalent to the 
covariance matrix of y. 

The SQP problem whose optimum is the efficient 
(least risky) multistage investment strategy can be 
outlined as the following optimization problem. 

min Var = Σi=1,n Σe∈Nt Pe [wk′
a(e) ((rk)2 Λr) wk

 a(e))] 
Subject to 

Constraints (1) … (8) 
 

 
3   Efficient Frontiers 
Financial reality dictates that the highest-performing 
portfolio strategy is also the most risky efficient 
strategy available. In order to obtain other points on 
the Markowitz efficient frontier, it is necessary to 
consider risk (variance), in conjunction with the mean 
return. In this case, the required expected net 
redemption value can be provides as constant WT. 

The statistics measures that control the risk and the 
maximum income are the variance and the mean. As 
stated above, for this problem, they are defined as: 

 

Mean = Σi=1,n Σe∈NT Pe [1′ wie]   

e∈Nt,t=1,…,T,i=1,…,n 

Variance = Σi=1,n Σe∈Nt Pe [wi′
a(e) ((ri)2 Λr) wk

 a(e))]  

e∈Nt,t=1,…,T,i=1,…,n 

The optimal investment strategy yields the 
expected wealth, WT  subject to the linear constraints 
(1) to (8). The solution to the SLP problem that 
maximizes the mean is WMAX, the maximum amount of 
money, and the solution to the SQP problem that 
minimizes the variance subject to the same constraints 
(1) to (8) is WMIN. The WT  can take values between 
WMIN  and WMAX.  The intermediate values WT values 
can be obtained solving the following quadratic 
problem,    

 
Minimize Variance 

Subject to 
Mean ≥ WT 

+ 
Constraints (1) … (8) 

 
By varying WT from a risk-seeking strategy 

(obtainable by solving the SLP) to a risk-averse 
strategy (obtainable by optimizing the above SQP 
without the performance constrain, Mean ≥ WT), the 
efficient frontier can be generated.  

In general terms, the efficient frontier is obtained 
as follows: The maximum-mean SLP problem is first 
solved to find the risk-seeking strategy; that is also the 
maximum expected net redemption value, WMAX. The 
minimum expected net redemption value, is then 
computed by solving the SQP problem. Its optimal 
represents the risk-averse strategy. Finally, for a 
number of equally-spaced points, the intermediate WT 
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values can be obtained solving the quadratic problem 
SQP with the corresponding WT value in the constraint 
Mean ≥ WT. The efficient frontiers for examples with 
5 and 10 assets can be seen in Figs. 1 and 2.  
 
 
4   Examples 

The procedure was tested with two examples. In 
both cases, 50 monthly periods (2002-2006) were used 
to build a scenario tree with four future stages. The 
scenario tree has two branches in each node. We 
considered five assets in the first example and ten 
assets in the second one. The data correspond to real 
assets in the BMV (Mexican bursaries market) and 
were obtained from Econom@tica (financial 
database). The examples were tested in a Pentium IV 
with 1.7 GHz and 256 Mb. The initial amount M was 
of 100 money units for both examples and we 
considered a withdrawal of TWt=0, for t=1,…,T. The 
scenario trees used for the example with 5 assets and 
the example with 10 assets are showed in Tables 2 and 
3 and were introduced in Osorio [4]. 

In both examples, the cash flow for every stage 
was calculated for 0% (using the SQP model), and 
100% (using SLP model) risk levels, and values for 
0%, 50% and 100% risk levels can be seen in Tables 4 
and 5. We considered 100 intermediate intervals of 
risk including the constraint  Mean ≥ (percentage)( 
SLP optimal value), in order to build the efficient 
frontiers.. The efficient frontiers for both examples, 
including all mean values for different levels of risk 
(represented by the variance values) are shown in 
figures 1 and 2. Models were solved with CPLEX. 
 
 
5   Conclusions 

Portfolio selection gives rise to difficult 
optimization problems when realistic side constraints 
and variables are added to the basic model.  

Portfolio selection gives rise to difficult 
optimization problems when realistic side constraints 
and variables are added to the basic model. The 
number of variables and constraint in the SLP and 
SQP models are increased by the number of assets and 
the topology of the scenario tree. The size of the 
scenario tree depends on the depth and branching at 
each time period. Our computational results show that 
even for large scenario trees it is possible to find 
solutions near to the optimal in a reasonable amount 
of time.  

The different level risk offer different investment 
options for different investors with different attitude 
to risk (Green [1]). The risk-averse investors will 
choose a risk level with a less variance value (for 

example, less than 50%) and the risk-seeker investor 
will choose greater levels of risk (for example, greater 
than 50%). The expected utility in every case, 
represented by the mean will be different. 
 
 
References: 
[1]  Green, R., Burton, H., When Will Mean-Variance 

Efficient Portfolios be Well Diversified?, Journal of 
Finance, Vol. 5, No. 47, 1992, pp. 1785-1809. 

[2] Gülpinar, N., Rustem, B., Settergren, R., 
Optimization and Simulation Approaches to Scenario 
Tree Generation, Journal of Economics Dynamics 
and Control, Vol. 28, No. 7, 2004, pp. 1291-1315. 

[3] Osorio, M.A., Gülpinar, N., Settergren, R., Rustem, B., 
Post-Tax Optimization with Stochastic Programming, 
European Journal of Operational Research, Vol. 
157, 2004, pp. 152-168. 

[4] Osorio, M.A., Jiménez, E., Gómez, M.A., Sánchez, A., 
A Simulated Annealing Approach for Multistage 
Portfolio Optimization, Research in Computing 
Science, Vol. 27, 2007, pp. 65-78. 

[5] Trippy, R., Lee, J., Artificial Intelligence in Finance 
and Investing: state-of-the-art technologies for 
securities selection and portfolio management. IR 
WIN Professional Publishing, USA, 1996. 

 

0

200

400

600

800

1000

1200

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000 24000 26000 28000 30000 32000

Variance/Risk

M
ea

n/
R

et
ur

n

 
Fig.  1. Risk Frontier for the 5 assets example. 
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Fig. 2 Efficient frontier for ten assets example 
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Table 3. Scenario Tree for 5 Assets 
Id 

node Asset1 Asset2 Asset3 Asset4 Asset5 Probability Id 
Father node Stage 

0 0.747 0.684 0.769 0.673 0.696 1.000 -1 0 
1 0.856 0.703 1.104 0.691 0.741 0.346 0 1 
2 0.655 0.667 0.485 0.657 0.658 0.654 0 1 
3 0.897 0.710 1.229 0.698 0.757 0.290 1 2 
4 0.774 0.689 0.853 0.677 0.707 0.710 1 2 
5 0.914 0.713 1.284 0.701 0.764 0.595 2 2 
6 0.964 0.722 1.438 0.709 0.785 0.405 2 2 
7 0.687 0.673 0.584 0.663 0.672 0.237 3 3 
8 0.797 0.791 0.692 0.904 0.680 0.763 3 3 
9 0.736 0.682 0.736 0.671 0.692 0.559 4 3 
10 0.504 0.641 0.020 0.632 0.597 0.441 4 3 
11 0.797 0.693 0.924 0.681 0.717 0.805 5 3 
12 0.695 0.675 0.610 0.664 0.675 0.195 5 3 
13 0.716 0.678 0.673 0.668 0.683 0.499 6 3 
14 0.757 0.685 0.798 0.674 0.700 0.501 6 3 

Table 4. Scenario Tree for 10 Assets 
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St
ag

e 
0 0.67 0.60 0.69 0.59 0.61 3.34 3.39 1.94 1.00 2.62 1.00 -1 0 
1 1.08 0.14 0.98 1.12 0.96 3.18 3.41 0.93 0.50 1.82 0.23 0 1 
2 1.14 1.17 0.91 0.72 0.46 1.53 4.21 1.07 1.53 1.56 0.77 0 1 
3 1.24 0.02 0.37 1.79 1.35 1.87 4.24 0.43 0.83 3.61 0.44 1 2 
4 0.05 0.21 0.40 2.18 0.43 4.97 0.60 0.72 0.71 2.69 0.56 1 2 
5 0.29 2.16 0.78 1.44 0.31 0.82 4.54 0.80 0.17 2.11 0.77 2 2 
6 1.17 0.83 0.28 1.36 0.89 0.73 5.24 0.55 2.85 2.78 0.23 2 2 
7 1.87 0.00 0.48 3.46 1.17 1.99 6.57 0.33 0.81 0.00 0.96 3 3 
8 0.09 0.01 0.70 3.58 2.56 0.13 2.19 0.82 0.93 5.34 0.04 3 3 
9 0.01 0.27 0.29 3.92 0.76 7.86 1.11 0.23 1.40 4.94 0.42 4 3 

10 0.06 0.38 0.31 3.11 0.21 6.88 0.52 0.25 0.75 5.33 0.58 4 3 
11 0.14 3.28 0.51 2.37 0.07 0.89 3.44 1.26 0.17 0.71 0.01 5 3 
12 0.19 2.39 0.29 1.39 0.61 0.83 7.25 1.05 0.26 4.08 0.99 5 3 
13 0.09 0.77 0.47 0.18 1.33 1.43 8.54 0.49 3.06 1.12 0.35 6 3 
14 1.67 1.66 0.47 2.65 1.19 0.90 3.83 0.25 3.57 1.47 0.65 6 3 

 
Table 3. Five Assets 

0% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 
Asset 1 0.00 0.00 0.00 0.00 0.00 
Asset 2 26.39 15.26 54.08 354.42 597.79 
Asset 3 0.00 0.00 0.00 0.00 0.00 
Asset 4 73.61 145.74 225.88 0.00 0.00 
Asset 5 0.00 6.57 0.00 121.21 204.54 

TOTAL 100 167.57 279.96 475.63 802.33 
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50% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 
Asset 1 99.08 76.14 18.87 0 0 
Asset 2 0 0 67.22 514.64 867.95 
Asset 3 0 35.91 159.89 0 0 
Asset 4 0.92 0 31.90 0 0 
Asset 5 0 62.59 19.99 77.94 130.84 

TOTAL 100 174.64 297.87 592.58 998.79 
100% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Asset 1 0 176.90 0 189.22 328.54 
Asset 2 0 0 0 149.42 248.58 
Asset 3 100 0 305.02 260.01 484.31 
Asset 4 0 0 0 73.36 135.50 
Asset 5 0 0 0 0 0 

TOTAL 100 176.9 305.02 672.01 1196.93 
 

Table 4. Ten Assets 
0% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Benchmarks_182D 5.00 0.00 38.12 78.79 130.38 
Benchmarks_28D 8.49 47.24 48.31 117.34 335.00 
Benchmarks_364D 24.64 42.85 35.48 97.25 131.74 
Benchmarks_7D 0.00 14.07 25.28 117.35 348.65 
Benchmarks_91D 48.51 38.30 54.86 139.37 245.93 
America_Movil_A 0.00 0.11 73.59 0.00 0.00 
America_Movil_L 0.00 0.00 0.00 0.00 0.00 
Ara_Con_A31sorcio 0.00 25.88 36.75 0.79 0.98 
Arca_Embotelladora 13.36 0.00 0.00 0.00 0.00 
Asureste_B 0.00 0.00 0.00 0.08 0.19 

TOTAL 100 168.45 312.39 550.97 1192.87 
50% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Benchmarks_182D 0.00 0.00 0.00 282.26 514.10 
Benchmarks_28D 1.41 0.00 0.00 317.25 758.82 
Benchmarks_364D 0.00 0.00 0.50 19.98 29.81 
Benchmarks_7D 1.37 0.00 70.32 369.94 1098.24 
Benchmarks_91D 0.00 1.36 0.00 332.55 573.74 
America_Movil_A 42.24 72.80 272.83 619.53 2024.76 
America_Movil_L 2.58 289.77 1052.51 4032.41 31284.61 
Ara_Con_A31sorcio 0.00 6.29 0.01 207.88 322.31 
Arca_Embotelladora 0.00 5.28 12.21 361.83 1037.81 
Asureste_B 52.40 13.55 321.35 2016.12 10261.69 

TOTAL 100 389.05 1729.73 8559.75 47905.89 
100% Risk Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 

Benchmarks_182D 0.00 0.00 0.00 0.00 0.00 
Benchmarks_28D 0.00 0.00 0.00 0.00 0.00 
Benchmarks_364D 0.00 0.00 0.00 0.00 0.00 
Benchmarks_7D 0.00 0.00 0.00 0.00 0.00 
Benchmarks_91D 0.00 0.00 0.00 0.00 0.00 
America_Movil_A 0.00 0.00    450.79 1,498.64 12,428.14 

America_Movil_L 100.00 439.44 1,755.93 10,594.33 81,967.64 

Ara_Con_A31sorcio 0.00 0.00 0.00 0.00 0.00 
Arca_Embotelladora 0.00 0.00 0.00 0.00 0.00 
Asureste_B 0.00 0.00 0.00 0.00 0.00 

TOTAL 100 439.44 2,206.72 12,092.97 94,395.78 
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