Similarity solutions of a MHD boundary-layer flow of a non-Newtonian fluid past a continuous moving surface

M.BENLAHCEN
University Picardie Jules Vernes
Faculté des Sciences
33, Rue St Leu Amiens
France

A.HAKIM
University Cadi Ayad
F.S.T Gueliz
B.P 549, Marrakech
Maroc

M.GUEDDA
University Picardie Jules Vernes
Faculté de Mathématiques et d'Informatique
33, Rue St Leu Amiens
France

Z.MAHANI
University Cadi Ayad
F.S.T Gueliz
B.P 549, Marrakech
Maroc

Abstract: The present paper deals with a theoretical and numerical analysis of similarity solutions of the two-dimensional boundary-layer flow of a power-law non-Newtonian fluid past a permeable surface in the presence of a magnitic field $B(x)$ applied perpendiculaire to the surface. The magnetic field B is assumed to be proportional to $x^{\frac{m-1}{2}}$, where x is the coordinate along the plate measured from the leading edge and m is a constant. The problem depends on the power law exponent m, the power-law index, n, and the magnetic parameter M or the Stewart number. It is shown, under certain circumstance, that the problem has an infinite number of solutions.

1. Introduction

The prototype of the problem under investigation is

$$
\begin{gather*}
\alpha \frac{\partial}{\partial y}\left(\left|\frac{\partial^{2} \psi}{\partial y^{2}}\right|^{n-1} \frac{\partial^{2} \psi}{\partial y^{2}}\right)+\frac{\partial \psi}{\partial x} \frac{\partial^{2} \psi}{\partial y^{2}}-\frac{\partial \psi}{\partial y} \frac{\partial^{2} \psi}{\partial x y} \tag{1.1}\\
+u_{e} \frac{\partial u_{e}}{\partial x}-\sigma B^{2}\left(\frac{\partial \psi}{\partial y}-u_{e}\right)=0
\end{gather*}
$$

with the boundary conditions

$$
\begin{equation*}
\frac{\partial \psi}{\partial y}(x, 0)=u_{w}(x), \quad \frac{\partial \psi}{\partial x}(x, 0)=v_{w}(x) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \frac{\partial \psi}{\partial y}(x, 0)=u_{e}(x) \tag{1.3}
\end{equation*}
$$

where the unknown function is the streamfunction ψ, u_{e} is the free stream velocity, k, ρ, σ and n are permeability, fluid density, electric conductivity and power-law index, respectively. The above problem is a model for the first approximation to two-dimensional laminar incompressible flow of an electrically conducting non-Newtonian power-law fluid pat a moving plate surface. Here the $x \geq 0$ and $y \geq 0$ are the

Cartesian coordinates along and normal to the plate with $y=0$ is the plate, the plate origin located at $x=y=0$. The magnetic field is given by $B(x)=B_{0} x^{\frac{m-1}{2}}, B_{0}>0$, and is assumed to be applied normally to the surface.
Problem (1.1)-(1.3) is deduced from the boundary-layer approximation

$$
\begin{equation*}
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0 \tag{1.4}
\end{equation*}
$$

$$
\begin{align*}
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y} \\
& =\alpha \frac{\partial}{\partial y}\left(\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}\right)+u_{e} \frac{\partial u_{e}}{\partial x}-\sigma B^{2}\left(u-u_{e}\right) \tag{1.5}
\end{align*}
$$

and

$$
\begin{align*}
& u(x, 0)=u_{w}(x), \quad v(x, 0)=v_{w}(x) \\
& \lim _{y \rightarrow \infty} u(x, y)=u_{e}(x) \tag{1.6}
\end{align*}
$$

according to $u=\frac{\partial \psi}{\partial y}$, and $v=-\frac{\partial \psi}{\partial x}$, where u and v represent the components of the fluid velocity in the direction of increasing x and y. Here, it is assumed that the flow behavior of the nonNewtonian fluid is described by the Ostwald-de Waele power law model, where the shear stress is
related to the strain rate $\partial u / \partial y$ by the expression [7], [13], [20],

$$
\tau=K\left|\frac{\partial u}{\partial y}\right|^{n-1} \frac{\partial u}{\partial y}
$$

where K is a positive constant and $n>0$ is called the power-law index. The case $n<1$ is referred to as pseudo-plastic fluids (or shear-thinning fluids), the case $n>1$ is known as dilatant or shear-thickening fluids. The Newtonian fluid is, of course, a special case where the power-law index n is one. The stretching, suction/injection velocities and the free stream velocity are assumed to be of the form

$$
\begin{align*}
& u_{w}(x)=u_{w} x^{m}, \quad v_{w}(x)=-v_{s} x^{\frac{m(2 n-1)-n}{n+1}} \\
& u_{e}(x)=u_{\infty} x^{m} \tag{1.7}
\end{align*}
$$

where u_{w} and u_{∞} are positive constants and v_{s} is a real number with $v_{s}<0$ for injection and $v_{s}>0$ for suction.

The magnetohydrodynamic (MHD) flow problems find applications in many physical, geophysical and industrial fields. Pavlov [17] was the first who examined the MHD flow over a stretching wall in an electrically conducting fluid, with an uniform magnetic field. Further studies in this direction are those of Chakrabarti and Gupta [8], Vajravelu [26], Takhar et al. [25, 22], Kumari et al. [14], Andersson et al. [3] and Watanabe and Pop [27]. The possibility of obtaining similarity solutions for the MHD flow over a stretching permeable surface subject to suction or injection was considered by [8], [26] for some values of the mass transfer parameter, say, f_{w} and by Pop and Na [18], for large values of f_{w} and where the stretching velocity varies linearly with the distance and where the suction/injection velocity is constant. The MHD flow over a stretching permeable surface with variable suction/injection velocity can be found in [9] A complet physical interpretation of the problem can be found in [8], [19], [21], [24].

In the present paper, we will examine semilarity solutions to (1.1)-(1.3) in the usual form

$$
\begin{equation*}
\psi(x, y)=\lambda x^{s} f(\eta), \quad \eta=\gamma \frac{y}{x^{r}} \tag{1.8}
\end{equation*}
$$

where s and r are real numbers, $\lambda>0$ and $\gamma>0$ are such that

$$
\lambda \gamma=u_{\infty}, \quad \alpha \lambda^{n-2} \gamma^{2(n-1)}=1
$$

Using (1.1) and (1.8) we find that the profile function satisfies
$\left(\left|f^{\prime \prime}\right|^{n-1} f^{\prime \prime}\right)^{\prime}+s f f^{\prime \prime}+m\left(1-f^{2}\right)+M\left(1-f^{\prime}\right)=0$,
if and only if

$$
m=s-r, \quad s(2-n)+r(2 n-1)=1
$$

which leads to

$$
s=\frac{1+m(2 n-1)}{1+n}
$$

In equation (1.9) the primes denote differentiations with respect to the similarity variable $\eta \in$ $(0, \infty)$ and the unknown function f denotes the similar stream function and its derivative, after suitable normalisation, represents the velocity parallel to the surface. The parameter $M=\frac{\sigma B_{0}^{2}}{u_{\infty} \rho}$ is the magnetic parameter. Equation (1.9) will be solved subject to the boundary conditions

$$
\begin{equation*}
f(0)=a, f^{\prime}(0)=b \tag{1.10}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime}(\infty)=\lim _{\eta \rightarrow \infty} f^{\prime}(\eta)=1 \tag{1.11}
\end{equation*}
$$

The parameters a and b are given by where $a=(n+1) v_{s}\left(\alpha u_{\infty}^{2 n-1}\right)^{-1 /(n+1)}$ and $b=\frac{u_{w}}{u_{\infty}}$. For the Newtonian fluid $(n=1)$ The ODE reads

$$
\begin{align*}
& f^{\prime \prime \prime}+s f f^{\prime \prime}+m\left(1-f^{\prime 2}\right)+M\left(1-f^{\prime}\right)=0 \\
& s=\frac{m+1}{2} \tag{1.12}
\end{align*}
$$

Numerical and analytical solutions to (1.12), in the absence of the free stream function $\left(f^{\prime}(\infty)=\right.$ $0)$ were obtained in [9], [11], [18], [23]. Numerical solutions, in the presence of the free stream velocity can be found in [4], [19], [24], for both momentum and heat tranfers.
In a physical different but mathematically identical context, equation (1.12), with $M=-m$, which reads (by a scaling)

$$
\begin{equation*}
f^{\prime \prime \prime}+(1+m) f f^{\prime \prime}+2 m f^{\prime}\left(1-f^{\prime}\right)=0 \tag{1.13}
\end{equation*}
$$

has been investigated by Aly et al. [2], Brighi et al. [5], Brighi and Hoernel [6], Guedda [12], Magyari and Aly [15] and Nazar et al. [16]. This equation with the boundary condition $(a=0, b=$ $1+\varepsilon$)

$$
\begin{equation*}
f(0)=0, \quad f^{\prime}(0)=1+\varepsilon, \quad f^{\prime}(\infty)=1 \tag{1.14}
\end{equation*}
$$

arises in the modeling the mixed convection boundary-layer flow in a porous medium. In [2] it is found that if m is positive and ε takes place in the rang $\left[\varepsilon_{0}, \infty\right)$, for some negative ε_{0}, there are two numerical solutions. The case $-1 \leq m \leq 0$ is also considered in [2]. The authors studied the
problem for $\varepsilon_{c} \leq \varepsilon \leq 0.5$, for some $\varepsilon_{c}<0$. It is shown that there exists ε_{t} such that the problem has two numerical solutions for $\varepsilon_{c} \leq \varepsilon \leq \varepsilon_{t}$. In [12] Guedda has investigated the theoritical analysis of (1.13), (1.14). It was shown that, if $-1<m<0$ and $-1<\varepsilon<1 / 2$, there is an infinite number of solutions, which indeed motivated the present work. Some new interesting results on the uniqueness of concave and convex solutions to (1.13) (1.14), for $m>0$ and $\varepsilon>-1$ were reported in [6].

Most recently Aly et al. [1] have investigated the numerical and theoritical analysis of the existence, the uniqueness and non-uniqueness of solutions to (1.13), (1.14). It is shown that the problem has a unique concave solution and a unique convex solution for any $m>0$ and $M \geq 0$. The case where the free stream is being retarded (increasing pressure) is also considered. The authors proved that, for any $-\frac{1}{3}<m<-M<0$ and any real number a, the problem (Newtonian case) has an infinite number of solutions. The multiplicity of solutions is also examined for $-\frac{1}{2}<m<-M<0$ provided $b>\frac{M}{m+1}$ and $a \geq \frac{b}{\sqrt{(m+1) b-M}}$.

The purpose of the this note is to examine problem (1.9)-(1.11) for $<m<-M<0$.

2. Existence of infinitely many solutions

The interest in this section will be in the existence question of multiple solutions of problem (1.9)-(1.11), where $-1<m(2 n-1), m<0$ and $m+M<0$. The existence result will be established by means of a shooting method. Hence, the boundary condition at infinity is replaced by the condition

$$
\begin{equation*}
f^{\prime \prime}(0)=\tau, \tag{2.1}
\end{equation*}
$$

where γ is the shooting parameter which has to be determined. Local in η solution to (1.9), (1.10), (2.1) exists for every $\gamma \in \mathbb{R}$, and it is unique. Denote this solution by f_{τ}. Let us describe what conditions will be imposed for f_{τ} to be global and satisfies (1.11). Note that the real number τ has a physical meaning. This parameter originates from the local skin friction coefficient, c_{f}, and the local Reynolds numbers, $R e_{x}$,
$\frac{1}{2} c_{f} R e_{x}^{1 / n+1}=\left[\frac{m(2 n-1)+1}{n(n+1)}\right]^{n /(n+1)}\left|f_{\tau}^{\prime \prime}(0)\right|^{n-1} f_{\tau}^{\prime \prime}(0)$,
On the other hand, since $a \geq 0$ and $b>0$ we may assume $f_{\tau}, f_{\tau}^{\prime}>0$ on some $\left(0, \eta_{0}\right), 0<\eta_{0}<\eta_{\tau}$.

Hence, the function E is monotonic decreasing on $\left(0, \eta_{0}\right)$. This implies

$$
\begin{equation*}
E\left(\eta_{0}\right) \leq E(0) \tag{2.4}
\end{equation*}
$$

which shows that $E\left(\eta_{0}\right) \leq 0$, tanks to (2.3). If $f_{\tau}^{\prime}\left(\eta_{0}\right)=0$, we get $E\left(\eta_{0}\right)=E(0)=0$, and then $E(\eta)=0$ for all $0 \leq \eta \leq \eta_{0}$. Therefore $f_{\tau}^{\prime \prime} \equiv 0$ on $\left(0, \eta_{0}\right)$, and this implies $\tau=0$ and $b=0$ or $b=\Gamma$, a contradiction. Hence f_{τ} is monotonic striclty increasing.
To show that f_{τ} is global, we use again the function E to deduce

$$
\begin{align*}
& \frac{1}{n+1}\left|f_{\tau}^{\prime \prime}\right|^{n+1}-\frac{m}{3} f_{\tau}^{\prime 3}-\frac{M}{2} f_{\tau}^{\prime 2}+(M+m) f_{\tau}^{\prime} \\
& \quad \leq \frac{1}{n+1}|\tau|^{n+1}-\frac{m}{3} b^{3}-\frac{M}{2} b^{2}+(M+m) b \tag{2.5}
\end{align*}
$$

Therefore $f_{\tau}^{\prime \prime}$ and f_{τ}^{\prime} are bounded. Hence, f_{τ} is bounded on $\left(0, \eta_{\tau}\right)$, if η_{τ} is finite, which is absurd. Consequently $\eta_{\tau}=\infty$; that is f_{τ} is global. Moreover, f_{τ} has a limit, say $L \in(0, \infty]$, at infinity, since f_{τ}^{\prime} is positive. To demonstrate that L is infinite, we assume for the sake of contradiction that $L<\infty$. Hence, there exists a sequence $\left(\eta_{r}\right)$ converging to infinity with r such that $f_{\tau}^{\prime}\left(\eta_{r}\right)$ tends to 0 as n tends to infinity. Clearly,

$$
\begin{gathered}
-\frac{m}{3} f_{\tau}^{\prime}\left(\eta_{r}\right)^{3}-\frac{M}{2} f_{\tau}^{\prime}\left(\eta_{r}\right)^{2}+(M+m) f_{\tau}^{\prime}\left(\eta_{r}\right) \\
\leq E\left(\eta_{r}\right) \leq E(0), \quad \forall n \in \mathbb{N}
\end{gathered}
$$

which implies $0 \leq E(\infty) \leq E(0)$. As above, we get a contradiction. It remains to show that the second derivative of f_{τ} tends to 0 at infinity, which is the case if $f_{\tau}^{\prime \prime}$ is monotone on some interval $\left[\eta_{0}, \infty\right)$, since $f_{\tau}^{\prime \prime}$ and f_{τ}^{\prime} are bounded. Assume that $\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}$ is not monotone on any interval $\left[\eta_{0}, \infty\right)$. Then, there exists an increasing sequence $\left(\eta_{r}\right)$ going to infinity with r, such that $\left(\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}\right)^{\prime}\left(\eta_{r}\right)=0,\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}\left(\eta_{2 r}\right)$ is a local maximum and $\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}\left(\eta_{2 r+1}\right)$ is a local minimum. Setting $\eta=\eta_{r}$ in equation (1.9) yields

$$
\begin{equation*}
s f_{\tau}^{\prime \prime}\left(\eta_{r}\right)=-\frac{m\left(1-f_{\tau}^{\prime}\left(\eta_{r}\right)^{2}\right)+M\left(1-f_{\tau}^{\prime}\left(\eta_{r}\right)\right.}{f_{\tau}\left(\eta_{r}\right)} \tag{2.6}
\end{equation*}
$$

Because f_{τ}^{\prime} is bounded and $f(\eta)$ tends to infinity with η, we get from (2.6) $f_{\tau}^{\prime \prime}\left(\eta_{r}\right) \rightarrow 0$ as $n \rightarrow \infty$, and (then) $f_{\tau}^{\prime \prime}(\eta) \rightarrow 0$ as $\eta \rightarrow \infty$.

In the next result we shall prove that $f_{\tau}^{\prime}(\eta)$ goes to 1 as η approaches infinity and this shows that problem (1.9)-(1.11) has an infinite number of solutions.

Lemma 2.2. Let f_{τ} be the (global) solution of (1.9), (1.10), (2.1) obtained in Lemma 2.1.

Then

$$
\lim _{\eta \rightarrow \infty} f_{\tau}^{\prime}(\eta)=1
$$

Proof. First we show that f_{τ}^{\prime} has a finite limit at infinity. From the proof of Lemma 2.1 the function E hase a finite limit at infinity, E_{∞}, say, and this limit takes place in the interval $\left[\frac{4 m+3 M}{6}, 0\right]$. Since $f_{\tau}^{\prime \prime}$ goes to 0 , we deduce that $-\frac{m}{3} f_{\tau}^{\prime 3}-\frac{M}{2} f_{\tau}^{\prime 2}+(M+m) f_{\tau}^{\prime}$ tends to E_{∞} as $\eta \rightarrow \infty$. Let L_{1} and L_{2} be two nonnegative real numbers given by

$$
L_{1}=\liminf _{\eta \rightarrow \infty} f_{\tau}^{\prime}(\eta) \text { and } L_{2}=\limsup _{\eta \rightarrow \infty} f_{\tau}^{\prime}(\eta)
$$

and satisfy

$$
E_{\infty}=-\frac{m}{3} L_{i}^{3}-\frac{M}{2} L_{i}^{2}+(M+m) L_{i}, \quad i=1,2
$$

Suppose that $L_{1} \neq L_{2}$ and fix L so that $L_{1}<L<$ L_{2}. Let $\left(\eta_{r}\right)_{n \in \mathbb{N}}$ be a sequence tending to infinity with n such that $\lim _{n \rightarrow \infty} f_{\tau}^{\prime}\left(\eta_{r}\right)=L$. Using the function E we infer

$$
E_{\infty}=-\frac{m}{3} L^{3}-\frac{M}{2} L^{2}+(M+m) L
$$

for all $L_{1}<L<L_{2}$, which is impossible. Then $L_{1}=L_{2}$. Hence, $f_{\tau}^{\prime}(\eta)$ has a finite limit at infinity. Let us note this limit by L, which is nonnegative. Assume that $L=0$. Then $E_{\infty}=0$. Since E is a decreasing function, we deduce

$$
E \equiv 0
$$

and get a contradiction. Hence $L>0$. Next, we use identity (2.2) to deduce, as η approaches infinity,
$\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}(\eta)=-(M+m) \eta+M L \eta-s L^{2} \eta+\frac{1+3 n m}{n+1} L^{2} \eta+$
$\left|f_{\tau}^{\prime \prime}\right|^{n-1} f_{\tau}^{\prime \prime}(\eta)=\left[m L^{2}+M L-(M+m)\right] \eta+o(1)$, and this is only satisfied if $m L^{2}+M L-(M+$ $m)=0$, which implies $L=1$, since L is positive. This ends the proof of the lemma and the proof of Theorem 2.1.

Lemma 2.2 shows also that $E_{\infty}=\frac{4 m+3 M}{6}<$ 0 . We finish this paper by a non-existence result in the case $m(2 m-1) \leq-1, n>\frac{1}{2}$ and $b \geq \Gamma$.
Theorem 2.2. Problem (1.9)-(1.10) has no nonnegative solution for $M>0, m<-M, m(2 n-$ $1)<-1$ and $b \geq \Gamma$.

Proof. Let f be a nonnegative solution to (1.9)-(1.10)). As above, the function E satisfies $E^{\prime}=-\frac{1+m(2 n-1)}{n+1} f f^{\prime \prime 2}$, which is nonnegative. Clearly, $E(0) \leq \lim _{t \rightarrow \infty} E(t)$, hence

$$
-\frac{m}{3} b^{3}-\frac{M}{2} b^{2}+(M+m) b \leq \frac{4 m+3 M}{6}<0
$$

and this is not possible.

3. Numerical results

Now we presents the numerical results for differents values of $n m$ and M :

Figure 1: $\mathrm{n}=1.5, \mathrm{M}=1$, and $\mathrm{m}=-2.5$

Figure 2: $\mathrm{n}=1.5, \mathrm{M}=1.2$, and $\mathrm{m}=-1.5$

Acknowledgments. The authors wish to thank Robert Kersner for interesting discussion. This work was partially supported by Direction des Affaires Internationals (UPJV) Amiens, France and by PAI No MA/05/116.

Figure 3: $\mathrm{n}=0.5, \mathrm{M}=1$, and $\mathrm{m}=-2.5$

Figure 4: $\mathrm{n}=0.5, \mathrm{M}=1.2$, and $\mathrm{m}=-1.5$

References:

[1] Aly E.H., Amkadni M. \& Guedda M., A note on MHD flow over a stretching permeable surface. In preparation
[2] Aly E.H., Elliott L. \& Ingham D.B., Mixed convection boundary-layer flow over a vertical surface embedded in a porous medium, Eur. J. Mech. B Fluids 22(2003)529-543.
[3] Andersson H.I., MHD flow of a viscous fluid past a stretching surface, Acta Mechanica, 95 (1992) 227-230.
[4] S. P. Anjali Devi \& R. Kandasamy, Thermal stratification effects on non linear MHD laminar boundary-layer flow over a wedge with suction or injection, Int. Comm. Heat Mass Transf. 30 (2003) 717-725.
[5] Brighi B., Benlahsen M., Guedda M. \& Peponas S., Mixed convection on a wedge embedded in a porous medium. In preparation.
[6] Brighi B. \& Hoernel D., On the concave and convex solution of mixed convection boundary layer approximation in a porous medium, Appl. Math. Lett. 19 (2006) 6974.
[7] Callegari A. J. \& Frieddman M. B., An analytical solution of a nonlinear, singular boundary value problem in the theory of viscous fluids, J. Math. Analy. Appl. 21 (1968) 510-529.
[8] Chakrabarti A. \& Gupta A.S., Hydromagnetic flow and heat transfer over a stretching sheet, Quart. Appl. Math. 37 (1979) 73-78.
[9] Chaturvedi N., On MHD flow past an infinite porous plate with variable suction, Ener. Conv. Mgmt. 37 (5) (1996) 623-627.
[10] Coppel W.A., On a differential equation of boundary layer theory, Phil. Trans. Roy. Soc. London Ser. A 253 (1960) 101-136.
[11] Cortel R., Flow and heat transfer of an electrically conducting fluid of second grade over a stretching sheet subject to suction and to a transverse magnetic field, Int. J. Heat Mass Transf. (publushed online, 2005).
[12] Guedda M., Multiple solutions of mixed convection boundary-layer approximations in a porous medium, Appl. Math. Lett. 19 (2006) 63-68.
[13] Howell T. G., JENG D. R. \& De Witt K. J., Momentum and heat transfer on a continuous moving surface in a powerlaw fluid, Int. J. Heat Mass Transfer, 40 (8) (1997) 1853-1861.
[14] Kumari M., Takhar H.S. \& Nath G., MHD flow and heat transfer over a stretching surface with prescribed wall temperature or heat flux, Warm und Stoffubert 25 (1990) 331-336.
[15] Magyari E. \& ALY E. H., Exact analytical solution for a thermal boundary layer in a saturated porous medium, Appl. Math. Lett.(publushed online, 2006).
[16] Nazar R., Amin N. \& Pop I, Unsteady mixed convection boundary-layer flow near the stagnation point over a vertical surface in a porous medium, Int. J. Heat Mass Transfer 47 (2004) 2681-2688.
[17] Pavlov K. B., Magnetohydrodynamic flow of an incompressible viscous fluid caused by deformation of a surface, Magnitnaya Gidrodinamika, 4 (1974) 146-147.
[18] Pop I. \& Na T. Y., A note on MHD flow over a stretching permeable surface, Mech. Res. Comm. Vol 25 No 3 (1998) 263-269
[19] Raptis A., Perdikis C. \& Takhar H. S., Effect of thermal radiation on MDH flow, App. Math. Comp. 153 (2004) 645-649.
[20] Schlichting H. \& Gersten K., Boundary layer theory, 8th Revised and Enlarged Ed., Springer-Verlag Berlin Heidelberg 2000.
[21] Takhar H.S., hydromagnetic free convection from a flat plate, Indian J. Phys. 45 (1971) 289-311.
[22] Takhar H. S., Ali M. A. \& Gupta A. S., Stability of magnetohydrodynamic flow over a stretching sheet, In: Liquid Metal Hydrodynamics (Lielpeteris and Moreau eds.), 465-471 Kluwer Academic Publishers, Dordrecht, 1989.
[23] Takhar H.S., Chamkha A. J. \& Nath G., Flow and mass transfer on a stretching sheet with a magnetic field and chemically reactive species, Int. J. Eng. Sci. 38 (2000) 1303-1314.
[24] Takhar H.S. \& Nath G., Similarity solutions of unsteady boundary layer equations with a magnetic field, Mecanica 32 (1997) 157-163.
[25] Takhar H. S., Raptis A. \& Perdikis C., MHD asymmetric flow past a semi-infinite moving plate, Acta Mechanica 65 (1987) 287290.
[26] Vajravelu K., Hydromagnetic flow and heat transfer over a continuous moving, porous surface, Acta Mechanica 64 (1986) 179-185.
[27] Watanabe T. \& Pop I., Hall effects on magnetohydrodynamic boundary layer flow over a continuous moving flat plate, Acta Mechanica 108 (1995) 35-47.

