
Quantum Potential Swarm Optimization of PD Controller for 

Cargo Ship Steering 
 

1
C. K. Loo, 

2
Nikos, E. Mastorakis 

1
Faculty of Engineering and Technology 

Multimedia University 

Melaka, Malaysia 
2
Department of Electrical Engineering and Computer Science 

Hellenic Naval Academy 

Piraues, GREECE 

 
 

 
 

 

Abstract: - This paper delineates the first attempt to combine the ideas from Centroidal Voronoi Tessellation 

(CVT), Quantum-Oscillator based Particle Swarm Optimization (QOPSO) and Quantum Clustering (QC) to 

realize a novel optimization approach named as Quantum Potential Swarm Optimization (QPOSO) based on 

quantum mechanics principle. The particles in standard PSO move along a determined trajectory in Newtonian 

mechanics, but in QPOS, the particles will exhibit quantum behaviour and bound to work in different principle. 

In addition, Centroidal Voronoi Tessellation (CVT) is implemented to distribute numerous quantum particles 

uniformly to ensure full coverage of search space. Quantum potential wells can be induced from the solutions 

given by quantum particles using quantum clustering technique. The strategic starting positions of quantum 

particle are then selected based on the minimal of quantum potential wells. The implementation of QPOSO to 

optimize a PD-type autopilot for a cargo ship is presented. The tuning of the PD controller parameters are 

considered to be difficult and tedious due to the high nonlinearity of the ship dynamic model and the external 

disturbances. However, QPOSO can provide a very promising technique for its simplicity and ease of use. The 

promising results from the experiment provide direct evidence for the feasibility and effectiveness of QPOSO 

for autopilot control of cargo ship. 

 

Key-Words: - Quantum Mechanics, Particle Swarm optimization, autopilots, nonlinear optimization, ship 

steering, PD control. 

 

1 Introduction 
An autopilot is a ship’s steering controller, which 

automatically manipulates the rudder to decrease the 

error between the reference heading angle and the 

actual heading angle. One of the conventional 

autopilots is based on simple is PD control. In order 

to maintain the desired performance of PD-type 

autopilots, the control parameters must be adjusted 

in accordance with the variations of both ship 

dynamics and environment disturbances. Ship 

dynamics may vary due to operational conditions 

whereas disturbances are wind, waves, and currents, 

which also vary according to weather and sea 

conditions [1]. However, it is a tedious and difficult 

task to properly adjust the control parameters of the 

autopilot. To cope with the problems associated 

with parameter optimization of autopilots, the 

Particle Swarm Optimization algorithm (PSO) 

[2][3] is considered in this paper. PSO has been 

shown to be a promising approach for solving both 

unconstrained and constrained optimization 

problems [2][3][4][5]. Recently, several heuristics 

have been developed to improve the performance 

and set up suitable parameters for the PSO 

algorithm [2][3]. Some theoretical work to analyze 

the trajectory of particles has been carried out. A 

constriction factor has been proposed by Clerc and 

Kennedy [2] to ensure convergence. Trelea [3] 

reported on the trajectory analysis using dynamic 

systems theory. Another variant of PSO known as 

Gaussian Swarm [13] is proposed to minimize the 

number of control parameters in PSO while 

maintaining comparable performance. A quantum 

harmonic oscillator inspired version of the QOPSO 

algorithm was proposed very recently [6]. The 

QOPSO algorithm permits all particles to have a 

quantum behavior instead of the classical 

Newtonian dynamics that was assumed so far in all 

versions of PSO. Therefore, instead of the  
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Newtonian random walk, some sort of “quantum 

trajectory” is imposed in the search process. One of 

the most attractive features of the new algorithm is 

the reduced number of control parameters, i.e. only 

one parameter required to be tuned in QOPSO. 

However the quantum-inspired PSO [6] 

demonstrated superior performance under the 

condition of large population sizes [6] and imposed 

additional variability in QOPSO performance results 

from the use of random starting configurations. The 

performance of QPOSO can be improved by 

strategically selecting the starting positions of the 

particles. It has been suggested the use of generators 

from Centroidal Voronoi Tessellation (CVT) as the 

starting points for the swarm can ensure the broad 

coverage of the search space and thus the solution 

space is fully explored for the optimal solution [7]. 

However, CVT relies on the large number of 

particles for a complete coverage of search space. In 

this paper, it is hypothesized that the response 

surface induced by the quantum particles consists of 

many quantum potential wells. The number of 

quantum particles generated from CVT can be 

reduced by selecting the minimal of quantum 

potential wells induced from quantum clustering 

technique [8]. The QOPSO framework is depicted in 

Fig. 1. 

In Section II, the Quantum Oscillator based 

Particle Swarm Optimization (QOPSO) is 

explained. Centrodail Vornoi Tesselation (CVT) 

algorithm and Quantum Clustering (QC) are briefly 

described in Section III and Section IV. Section V 

presents the steering dynamics and control of a 

cargo ship model. Section VI discusses 

experimental results. Conclusion is presented in 

Section VII. 

 

 

 

2 Quantum Oscillator Based Particle 

Swarm Optimization (QOPSO) 
 

The QOPSO algorithm allows all particles to move 

under quantum-mechanical rules rather than the 

classical Newtonian random motion [6]. In quantum 

time-space framework, the quantum state of a 

particle is depicted by wavefunction ( ),x tΨ  and 

governed by the general time-dependent 

Schrodinger equation 

( ) ( ), ,ih x t H x t
t

∂
Ψ = Ψ

∂

�
     (1) 

The operator H
�

 is the Hamiltonian operator. For a 

single particle of mass m  in a potential field 

( )V x
, it is given by 

( )
2

2

2

h
H V x

m
= − ∇ +
�

     (2) 

where h  is Planck constant, m is the mass of the 

particle, and ( )V x  is the potential energy 

distribution. It is hypothesized that the particle 

system that represents the search space, is a 

quantum system. Each particle is of quantum state 

formulated by wavefunction. An individual particle 

is assumed to move in a harmonic oscillator 

potential field in search space, of which center is 

point
p

. The harmonic oscillator potential field is 

attractive that eventually pull all particles to the 

point
p

. With point 
p

 the zero point of potential, 

the potential energy of the particle in one-

dimensional harmonic oscillator field is represented 

as 

( ) 21

2
V x kx=       (3) 

where k  is a parameter defining the well 

“depth” or “strength”. Again, this problem has the 

following well-known analytical solution [2] 

( ) ( )
2 2

0.5

0.5

0.52 !

x

n nn
x H x e

n

αα
α

π
− 

Ψ =  
 

     (4)  

Where 

1
4

2

mk

h
α

 
=  
 

 and 
n

H  is the Hermite 

polynomial with integer index n . Equation (4) 

shows that multiple possible eigen-states exists in 

this system. However, the problem can be simplified 

considerably by assuming that only the lowest 

CVT algorithm for dense quantum 

particles initialization 

Quantum clustering algorithm for strategic 

quantum particles allocation 

QPOSO algorithm for quantum 

inspired optimization 

Figure 1. Framework of Quantum Potential 

Swarm Optimization 
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possible mode (the ground state 0n = , is available. 

In this case, the Gaussian probability can be 

obtained the Gaussian probability function [1] 

( ) ( )
2 22

0

yQ y y e αα

π

−= Ψ =     (5) 

The Q  or ( )0 yΨ  , the density function of 

probability that the particle appears at the 

position relative to p and y x p= − . Therefore, 

The updating equation can be derived as 

1 1
lnx p

uα

 
= ±  

 
 where u is random number 

uniformly distributed on ( )0,1 . From convergence 

analysis in [1], it was shown 

1 2
x p

g
β

α
= = −       (6) 

constrained by 0.75g > . The control parameter β  

can be reduced to the selection of parameter
g

. 

3g =  is chosen in this paper. The QOPSO 

algorithm is summarized as follows: 

 

3 Centroidal Voronoi Tessalations 

A group of points in the search space is designed to 

be the set of solution generators. Particle 

initialization in PSO can be thought as a process to 

allocate the solution generators in the search space. 

The space is partitioned into compartments with 

particle as their centroid.   The particles should be 

initialized so that they are distributed as evenly as 

possible throughout the space to ensure broad 

coverage of the search spaces. The standard method 

of particle initialization in standard PSO fails to 

accomplish this goal, especially in high-dimensional 

spaces [8]. Centroidal Voronoi Tessellation (CVT) 

is a way to partition a space into compartments [8]. 

It has been shown that CVT can initialize the PSO 

particles evenly in the solution space and lead to 

improved performance [8]. Two of the most well-

known algorithms for computing CVTs are Mac 

Queen’s method [8] and Lloyd’s method [9].  

Lloyd’s algorithm is deterministic and requires only 

a few iterations, but each one is computationally 

expensive. In this paper, Lloyd’s algorithm is 

chosen to compute CVT using the source codes 

available from the authors [9]. The details of the 

algorithm are explained in the literature [9]. Fig. 2 

shows the CVTs for 3000 points of generators to be 

used as dense initial population of particles in 

QPOSO for the experiment to be discussed in this 

paper. 
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Figure 2. Centroidal Voronoi Tesselations for 

3000 points 
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3 Quantum Clustering 

The quantum clustering is a non-parametric 

clustering technique [8] based on non-parametric 

clustering technique. In this technique, it uses 

N data points, 1, ,
N

x x…  to estimate the probability 

density function using the parzen-window estimator. 

The estimator is constructed by associating with 

each of the N  points a Gaussian defined as in 

equation 

( ) ( )
2 22

1

m

N
x x

m

x e
σ− −

=

Ψ =∑    (7) 

The maxima of the function ( )xψ haven been 

shown to occur at the cluster centers [10], where 
21 2σ  is the scale of the probability estimator. The 

function ( )xψ  is the Schroedinger Wave Function 

and performs a nonlinear transformation of the input 

space into Hilbert space. The motivation wish to 

view ( )xΨ  as an eigenstate of the time 

independent Schrodinger Wave equation [14], 

defines as in equation 

( )2

2

1

2
V x E

σ

 
− ∇ + Ψ = Ψ 
 

   (8) 

where ( )V x is denoted the potential energy, E  is 

denoted the energy eigenvalue and σ  deduces the 

correct clustering of the space as it controls the 

width of the parzen-window. The parameter σ  can 

be controlled to yield the relevant number of 

clusters. Given ( )xΨ  for any set of data points we 

can solve equation for ( )V x : 

( )
( )

( )

2

2

1

2
x

V x E
x

σ

 
∇ Ψ 

 = +
Ψ

     (9) 

If ( )V x  is positive definite, that is in equation 

( )

( )

2

2

1

2
min

x

E
x

σ

 
∇ Ψ 

 = −
Ψ

              (10) 

As the lowest eigenstate of the time independent 

Schrondinger Wave equation, E  is the minimal 

eigenvalue of V . The lowest possible eigenvalue 

occurs for the harmonic potential in which case 

2E d= . This leads to the inequality (11). 

1
0

2
E d< ≤                (11) 

In quantum clustering, the cluster centers are 

obtained while searching for the minima of the 

potential functions. One may locate the cluster 

centers, and deduce the clustering allocation of the 

data, by following the dynamics of gradient descent 

into the potential minima. Assuming that ( )m su x is 

the probability that 
s

x  belongs to the cluster of 

points represented by the vector 
m

v . By defining 

( )0m

mv x= , one follows the steps of  

( ) ( ) ( ) ( )( )1m m mv t v t t V v tη= − − ∇              (12) 

letting the points reach an asymptotic fixed value 

coinciding with a clustering center. In this paper, the 

Gaussian function ( )xΨ  from equation (7) is 

generalized to allow for different weighting of 

different points, as in  

( ) ( )
2 22

1

m

N
x x

m

m

x c e
σ− −

=

Ψ =∑                         (13) 

with 0mc ≥ . The mc  is calculated by the fitness 

function in Quantum Oscillator based Particle 

Swarm Optimization (QOPSO) algorithm, for 

emphasizing or deemphasizing the influence of data 

points based their fitness value. Therefore, the 3000 

quantum particles generated by CVTs is reduced to 

30 by the quantum clustering algorithm based on the 

minimal eigenvalues of V  as shown in Fig. 3.  
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4  PD Control of Cargo Ship Steering 
 

 

Assuming the “bobbing” or “bouncing” effects of 

the ship is neglected for large vessels, the motion of 

the ship is described by a coordinate system which 

is fixed to the ship [10]. Based on Fig. 4, a simple 

model which describes the dynamical behavior of 

the ship can be expressed by the following 

differential equation: 

( ) ( ) ( )

( ) ( )( )

1 2 1 2

3

1 2

1 1 1 1
t t t

K
t t

ϖ ψ ψ
τ τ τ τ

τ δ δ
τ τ

   
+ + +   
   

= +

�� ���

�

           (14) 

where ψ  is the heading of the ship and δ  is the 

rudder angle. Assuming zero initial conditions, (14) 

can be written 

( ) ( )
( )( )

3

1 2

1

1 1

s K s

s s s s

φ τ

δ τ τ

+
=

+ +
             (15) 

where 1 2, ,K τ τ  and 3τ  are parameters which are a 

function of the ship’s constant forward velocity u  

and its length l  as expressed below: 

0

u
K K

l

 
=  

 
                                (16) 

0 , 1, 2,3.i i

l
i

u
τ τ

 
= = 

 
              (17) 

where we assume that for a cargo ship 

0 10 20 303.86, 5.66, 0.38, 0.89,K τ τ τ= − = = =  and 

161l =  m [12]. The ship is assumed to travel in the 
x  direction at a velocity of 5m/s. The model in (5) 

is obtained by linearizing the equations of motion 

around the zero rudder angle ( )0δ = . This is only 

valid if the ship make small deviations from a 

straight line path, ( )5δ < �
. For 5δ > �

, an 

extended model given as follows should be used 

[11]. 

( ) ( ) ( )( )

( ) ( )( )

1 2 1 2

3

1 2

1 1 1 1
t t H t

K
t t

ϖ ψ ψ
τ τ τ τ

τ δ δ
τ τ

   
+ + +   
   

= +

�� ���

�

     (18) 

 where ( )( )H tψ�  is a nonlinear function of  ( )tψ� . 

The function is approximated as equation (19) under 

steady state condition, 0.ϖ ψ δ= = =����  

 

( ) 3
H a bψ ψ ψ= +� � �                 (19) 

 

where a  and b  are real valued constants such that 

a  is always positive. They are chosen to be 1 in this 

paper.  

 

A direct PD controller is used for the cargo ship 

steering. The PD-type control law which will be 

employed for this process may be expressed by 

 

( ) ( ) ( )( ) ( )p r dt k t t k tδ ψ ψ ψ= − − �             (20) 

 

The reference model for this process is chosen to be 

 

Figure 3.  Voronoi diagram of 30 quantum 

potential particles extracted from quantum 

clustering  

Figure 4. Cargo Ship 

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         228



( ) ( )2 2

n
m r

n n

t t
p p

ω
ψ ψ

ζω ω
=

+ +
                       (21)        (21) 

In the simulation, 1, 0.05nζ ω= =  are chosen. The 

PD controller parameters, 
p

k  and 
d

k  are optimized 

by PSO to minimize the following cost function 

which represents the propulsive energy losses due to 

steering. 

 

( ) ( )( )2 2

1

1 T

t

J e t t
T

λδ
=

 
= + 

 
∑                            (22)          

 

The λ  is set to 0.01 in the simulation. 

 

5 Experimental Results 
 

For the comparative analysis for QPOSO model 

with three other latest PSO models (Clerc[2], 

Trelea[3] and Gaussian[14]), the nonlinear process 

model given in equation (18) is used to emulate the 

“real” ship dynamics. The QPOSO models will 

perform the PD controller optimization based on the 

cost function defined in equation (22). The QPOSO 

algorithms were implemented using the PSO 

toolbox in Matlab [12]. During the numerical 

experiments, QPOSO models were run with an 

initial population of particles generated by quantum 

clustering shown in Fig. 3. All the running trials 

were carried out with a population of 30 particles 

and 200 generations. From the results obtained, it 

can be observed that the QPOSO model shows 

better accuracy than Clerc and Gaussian models and 

comparable to Trelea model. The result presented is 

still preliminary, but show clearly the QPOSO 

model has the ability to optimize the PD controller 

of cargo ship steering. The optimization curve is 

shown in Fig. 5. Table 1 summarizes the results. 

Fig. 6(a) and 6(b) depict the dynamic response of 

the PD controlled cargo ship based on optimization 

of QPOSO model. 

 

 

6 Conclusion 
 

    A unified framework for quantum inspired 

particle swarm optimization named as Quantum 

Potential Swarm Optimization (QPOSO) is 

proposed for the study of PD controller optimization 

for the cargo ship steering system. The QPOSO 

integrates the ideas from Quantum Oscillator 

Particle Swarm Optimization (QOPSO), Quantum 

Clustering (QC) and Centroidal Voronoi 

Tessellation (CVT) for a complete solution for the 

particles initialization problems in standard PSO. 

QPOSO is tested and able to outperform other three 

  Figure 5. Result for the PD controller optimization of cargo ship steering using 

Quantum Potential Swarm (QPOS) model. 

 

Table 1 Summary of results  

PSO model Kp Kd gbest (J) 

Clerc[2] -3.789 -563.78 0.7280 

Trelea[3] -3.894 -575.72 0.7239 

Gaussian[13] -3.683 -547.90 0.7339 

QPOSO -3.917 -583.51 0.7253 
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latest PSO models. Despite the highly nonlinear 

characteristics of cargo ship dynamics, QPOSO has 

shown its ability to optimize the PD controller to 

minimize the propulsive energy losses due to 

steering. The ship heading error is effectively 

minimized. The promising results in this paper 

clearly indicate that QPOSO can be an effective tool 

to optimize the steering control of cargo ship and 

other naval engineering applications. 
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(a) 

(b) 

Figure 6.  (a) The step response and rudder angle of 

cargo ship steering control  based on optimization of 

Trelea PSO model. (b) Ship heading error and 

reference model heading 
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