
Data Base Support for Intrusion Detection with Honeynets

RICHARD A. WASNIOWSKI
Computer Science Department

California State University Dominguez Hills
Carson, CA 90747, USA

Abstract: - As computer attacks are becoming more and more difficult to identify the need for
better and more efficient intrusion detection systems increases. The main problem with
current intrusion detection systems is high rate of false alarms. In this paper we discuss our
experience in analyzing benefits of honeynets for intrusion detection. Using honeypots
provides effective solution to increase the security; it is also useful tool for network forensic.
Our purpose for this work is to examine how to integrate multiple intrusion detection sensors
and honeynets in the order to minimize the number of incorrect-alarms. We present a
framework for designing honeynets based project for network security analysis and an
examples of the framework.

Key-Words: - Intrusion detection, honeypot, honeynets, false alarm, database, snort.

1 Introduction
The purpose of this paper is to discuss
implementation of prototype multi sensor based
intrusion detection system with honeynets. We
are especially interested in analyzing traffic that
has an abnormal or malicious character and
should prompt a closer look. A specific feature
of the model is that the systems use multiple
sensors and data mining to process log files.
This reduces the overhead in a distributed
intrusion detection system.

2 Background
There are several intrusion detection systems,
and one of the most popular in public domain is
Snort[4]. Snort looks for attack signatures,
which are specific patterns of activity that has
been defined to be of a suspicious or malicious
intent. Snort relies on the ability to recognize
attack signatures in order to identify an attack.
These pattern recognition definitions are called
rules. Attacks are not static, as they are
continuously evolving as systems are protected
to withstand existing attack methodologies. As
indicated by Cox and Gerg [4], Snort is an open
source network packet monitoring and
Intrusion

Detection System. Snort looks for attack
signatures, which are specific patterns of
activity that has been defined to be of a
suspicious or malicious intent. Snort analyzes
network packets, and thus is classified as a
Network Intrusion Detection System, or NIDS.
These types of systems must be connected to
the networks that they monitor and unless the
network topology is very simple, multiple Snort
systems, called Snort sensors, must be setup
and configured to monitor these networks.
Snort relies on the ability to recognize attack
signatures in order to identify an attack. These
pattern recognition definitions are called rules.
Attacks are not static, as they are continuously
evolving as systems are protected to withstand
existing attack methodologies. Thus, it is
critical to perform analysis of prior activity to
look for trends or changes in activity that are
not typically classified as an attack which are
often the precursor to an attack. Though it is
possible to analyze information on multiple
Snort sensors one at a time, it is difficult to
summarize or perform analysis from a multi-
Snort sensor perspective. For example, if an
organization has multiple office locations in
widely different geographical locations, it
would be expected that separate Snort sensors
are configured and operating. If an attacker

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 11

targets the organization, it is possible that these
different geographical locations are probed and
attacked in series or simultaneously. Being able
to recognize probing or attacking at a multi-
geographic perspective can provide value in
understanding individual sensor alerts. Snort
evaluates data at the packet level and thus must
process a large amount of data in real-time.
Because of this, logging performance is
important and to achieve this, the data storage
implementation for Snort is optimized for fast
writing. This results in a highly normalized
database design where there are many one to
one relationships. In fact, information
representing the primary type of information in
Snort, called an event (which is the packet
information that matched one or more Snort
rules), is represented in no less than six tables.
One of the tables contains information that
must always be provided for every event, and
the other five tables contain information that is
optional depending on the type of event that has
occurred. This implementation allows for
writing the smallest amount of information at a
time, which allows for high performance when
logging information. However, this design's
drawback is when there is a need to read the
information for reporting and other analysis.
Displaying information for a single event may
require joining six or more tables using outer
joins, which impacts reporting performance.
The primary reason for building a data mart or
data warehouse is to develop an intelligent,
consolidated view of enterprise information.
But each year, a large number of business
intelligence and data warehousing initiatives
fail because of erroneous or incomplete data.
Often, users ignore the importance of
developing a data management strategy as
part of their extract, transform, and load or
data warehouse architecture. Even with this
highly normalized database design, the log data
cannot be kept indefinitely, requiring that the
data is removed from the sensor system by
deleting older data. This results in the loss of
data that could be used to develop better rules
or provide evidence of an attack. Though it can
be archived before deleting, the data is then
offline and harder to analyze. Existing multi-
Snort log reporting applications do exist.
ACID, a popular web-database application has
been available since. (see Fig.1and Fig2)

Fig.1 ACID monitor

Fig2 Snortalog example
However, ACID is designed so that it can be
configured as the primary store for Snort log
data and thus is subject to the same
performance and historical data issues that the
Snort sensors face - in the section titled "The
Ongoing Use of the ACID Console," Cox and
Gerg [4] discusses deleting Snort log data on a
periodic basis, though recommending backing
up the data to some type of offline storage
before deleting the data. A honeypot is a
system whose value lies in being probed,
attacked, or otherwise taken advantage of by
attacker. Spitzner classifies honeypot solutions
into two broad categories: production and
research. For research purposes, we simply
want to collect as much information on our
attackers as possible. Production systems are
generally used as an added layer of network
security. Production honeypots are thought of
as simpler and more intuitive than research
honeypots. This affords system administrators
the freedom to select from several
commercially available (and sometimes free)
honeypot solutions. Examples of such
solutions that are currently available include
BackOfficerFriendly, Specter, and honeyd.
Research honeypots, on the other hand, are
often homemade solutions that can track an
attacker's actions. Network security
professionals and educational institutions often
employ research honeypots in the hopes of
seeing a hacker in action. A honeypot that is to
be used for research will often contain a fully
operational operating system running certain
services and vulnerabilities. Generally, this
type of honeypot is much more difficult to
configure and requires more time for upkeep.
AIDE is a tool for trying to detect if someone
has been on our machine and changed anything.
If we know or suspect that someone has been

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 12

on our machine, we can run aide to see what
files have been modified, this will be a great
help as we try to see what someone has done.
AIDE works be creating a checksum of files in
specific, user defined directories, saving these
in a database, and checking them against the
same files at a later date. The major drawback
to AIDE is human, that is, it has to be run
BEFORE an attack or it is worthless.

3 System Framework
Intrusion detection monitoring multiple systems
and networks requires the existence of multiple
intrusion detection systems. Each network
being monitored requires its own intrusion
detection system. Also, bandwidth limitations
more than one intrusion detection system may
be required on the same network.

In practical functioning intrusion detection
systems produce false alarms called "false
positive." This is basically an event identified
as an intrusion attempt, but in reality it is not.
The typical response to this by the
administrator is to reconfigure the intrusion
detection system to not identify that particular
event as an intrusion attempt.

On the other hand, being constantly notified by
"false positives" may also result in a false sense
of security, as the administrator can adopt an
attitude that typically intrusion events reported
by the intrusion detection system are false
positives and may not properly respond to a
real intrusion attempt. In order to be more
responsive the intrusion detection system must
be configured in a way that will probably report
many of these "false positives". One possibility
to minimize 'false positives" is to fuse data
from multiple sensors. This requires both new
data fusion methods and practical experiments.
The main goal of our work is to develop such
methods and test them in experimental setup.
This report describes first step in designing and
implementing such a system.

The snort system uses various rule-based
techniques based on comparison of past and
current attacks. In order to implement efficient
intrusion detection system integration of
multiple techniques and tools with snort is
required. The real time data collection process
is very intensive and produces large amount of
data. In addition the whole system depends on
data and database failure must be prevented.

"Recognizing whether two sensors see the same
or two different objects is a major challenge.
Another challenge is effectively processing
data streams that come from multiple sensors.
Features that are not typical of the traditional
database management system, such as almost
real-time response. The general framework for
the system is shown on Fig.3, and Fig. 4.

Fig.3

Fusion model similar to fwsnort [18] translates
snort rules into an equivalent iptables ruleset.
The Snort based multiple sensors system
monitors two networks: One fully operational
and one experimental. The NAT
Router/Firewall is configured to allow Internet
access to the web servers, by mapping selected
ports to the web server behind the NAT
Router/Firewall on the internal network. This
configuration is selected to allow a single
attack to simultaneously attack the NAT
Router/Firewall and the web server so we could
generate Snort events that had identical
timestamps to ensure that we could successfully
merge data from multiple snort sensors with
identical timestamps. One web server was an
Intel-based PC running Microsoft Windows
2003 Server, the second Centos based Linux
system. The attack system is an Intel-based PC
running Fedora Core 4 (FC4) GNU/Linux,
laptop computer. Nmap was selected as it was
considered by Cox and Gerg [4], as one of the
most widely used port scanners for network
analysis. Each Snort sensor is an Intel-based PC
running CENTOS4.3 with Snort 2.3.0/2.6.0 and
mySQL 4.3.10. Each Snort sensor is configured
with identical rule sets (the set of rules included
with Snort 2.3.0), to run in Intrusion Detection
System (IDS) mode, and to log to the MySQL
database engine installed on each Snort sensor.
As indicated by Beale et al [2], logging to a
relational database was selected as it is
considered to be more efficient than logging to
files, and later logging to file was added as it is
useful for analyzing data by some specialized

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 13

packages such as Snortalog. The system is
implemented using Open Software whenever
possible such as Snort, mySQL etc. We are
using Windows 2003 servers for our Web
server and Honeypot. Our intrusion detection
sensors are installed on Linux based systems.

Fig. 4

4 Practical experiments
As computer attacks become more and more
sophisticated, the need to provide effective
intrusion detection methods increases.
Network-based distributed attacks are
especially difficult to detect and require
coordination among different intrusion
detection components. We propose a solution
that responds to such requirements. Our
implemented NIDS model is in fact a prototype
and needs to evolve into more mature and
efficient model. Future work should emphasize
a revisit of database design. One of the key
reasons that the entities have so many
attributes, in current implementation, was the
concern of including important attributes and
thus having all data available. This resulted in
the inclusion of practically all of the event data.
We believe that a good approach for achieving
this would be an expansion of the solution:
including and consolidated version of the
operational Snort database that is it is used in

conjunction with NIDS for reporting and
analysis. On the whole, our information fusion
based intrusion detection model is in fact a
prototype and needs to evolve into more mature
and efficient model. Future work emphasizes a
revisit of database design to allow data fusion
from multiple sensors.

6 Conclusion
In this work we have studied some data mining
issues related to intrusion detection data,
aiming at a complete data mining framework.
In particular, we have justified the need for a
data warehousing approach to handle intrusion
detection data and we have focused on
multidimensional access methods to efficiently
index data. A second issue concerns clustering
techniques on large alerts datasets.

References:
[1] J. Ashenfelter, Data Warehousing with

MySQL,
http://www.mysqluc.com/cs/mysqluc2005/
vi

[2] Richard Bejtlich, “The Tao of Network
Security Monitoring: Beyond Intrusion
Detection”, 2004 by Addison-Wesley.

[3] A. Bonifati, F. Cattaneo, S. Ceri, A.
Fuggetta, S. Paraboschi, Designing Data
Marts for Data Warehouses in: ACM
Transactions on Software Engineering and
Methodology (TOSEM) Volume 10 ,
Issue 4 (October 2001), 452 – 483.

[4] Cox, Kerry and Gerg, Christopher, 2004.
Snort and IDS Tools, O’Reilly Media, Inc.

[5] G. Giacinto, F. Roli and L. Didaci, Fusion
of multiple classifiers for intrusion
detection in computer networks, Pattern
Recognition Letters 24 (2003), pp. 1795–
1803.

[6] Y. Liao and V.R. Vemuri, Use of K-
nearest neighbor classifier for intrusion
detection, Computers and Security 21
(2002) (5), pp. 439–448.

[7] E. Lundin and E. Jonhsson, Anomaly-
based intrusion detection: privacy concern
and other problems, Computer Networks
34 (2000), pp. 623–640.

[8] MIT Lincoln Laboratory,
http://www.ll.mit.edu/IST/ideval/.

[9] J. McHugh, Testing intrusion detection
systems: a critique of the 1998 and 1999
DARPA intrusion detection system
evaluations as performed by Lincoln

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 14

Laboratory, ACM Transactions on
Information and System Security 3 (2000)
(4), pp. 262–294

[10] J. Nikom , Real-time Sensor Data
Warehouse Architecture Using MySQL,
http://www.mysqluc.com/cs/mysqluc2005/
vie

[11] Snort Users Manual, Caswell, Brian and
Hewlett, Jeremy, 2003, Snort.org
http://www.snort.org/docs/snort_htmanual
s/htmanual_232

[12] Snort Database Plugin Documentation.
Danyliw, Roman, 2002, Snort.org. August
2002.
http://www.snort.org/docs/snortdb/snortdb
.html

[13] E. Thomsen OLAP Solutions: Building
Multidimensional Information Systems,
Wiley, New York, NY (2000).

[14] Wasniowski R. Network Intrusion
Detection System, RAW-RR-09-02,
Report 2004.

[15] Wasniowski R., Multi-sensor agent-based
intrusion detection system, Proceedings of
the 2nd annual conference on Information
security, Kennesaw, Georgia pp: 100 –
103, 2005.

[16] N. Ye, S. Masum Emran, Q. Chen and S.
Vilber, Multivariate statistical analysis of
audit trails for host-based intrusion
detection, IEEE Transactions on
Computers 51 (2002) (7).

[17] Teo, L., Sun, Y., Ahn, G. Defeating
Internet Attacks Using Risk Awareness
and Active Honeypots, Proceedings of the
Second IEEE International Information
Assurance Workshop (IWIA'04), 2004.

[18] Weiler, N. Honeypots for Distributed
Denial of Service Attacks, Proceedings of
the IEEE International Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE'02),
2002.

[19] Honeynet Project,
http://www.honeynet.org/

[20] Computer Crime and Intellectual Property
Section (CCIPS), 18 U.S.C. 2511,
http://www.cybercrime.gov/usc2511.htm

[21] Yang, T.A., Yue, K., Liaw, M., Collins,
G., Chen, P., etc. “Design of a distributed
computer security lab”. Journal of
Computing Sciences in Colleges. Volume
20, Issue 1. pp. 332-346. The Consortium
for Computing in Small Colleges, 2004.

[22] Spitzner, L. Honeypots Tracking Hackers,
MA: Addison-Wesley, 2002.

[23] Provos, N. Honeyd: A Virtual Honeypot
Daemon, Technical Report, Center for
Information Technology Integration,
University of Michigan.

[24] Provos, N. A Virtual Honeypot
Framework, USENIX Security
Symposium, August 2004.

[25] Provos, N. Developments of the Honeyd
Virtual Honeypot, http://www.honeyd.org

[26] Baumann, R. Honeyd - A Low
Involvement Honeypot in Action,
originally published as part of the GCIA
practical.
http://security.rbaumann.net/download/hon
eyd.pdf

[27] Chandran, R., Pakala, S. Simulating
Network with Honeyd, Technical paper,
Paladiaon Networks, December 2003.
http://www.paladion.net/papers/simulating
_networks_with_honeyd.pdf

[28] Nmap, http://www.insecure.org/nmap
[29] Snort, http://www.snort.org
[30] Analysis Console for Intrusion Detection,

http://acidlab.sourceforge.net/

http://www.tik.ee.ethz.ch/~weiler/papers/wetice
02.pdf
[31]
[32] http://www.snort.org
[33] http://www.honeypots.net/ids/links
[34] http://online.securityfocus.com/infocus/14

98

Proceedings of the 6th WSEAS Int. Conference on TELECOMMUNICATIONS and INFORMATICS, Dallas, Texas, USA, March 22-24, 2007 15

http://www.honeynet.org/
http://www.cybercrime.gov/usc2511.htm
http://www.honeyd.org/
http://security.rbaumann.net/download/honeyd.pdf
http://security.rbaumann.net/download/honeyd.pdf
http://www.paladion.net/papers/simulating_networks_with_honeyd.pdf
http://www.paladion.net/papers/simulating_networks_with_honeyd.pdf
http://www.insecure.org/nmap
http://www.snort.org/
http://acidlab.sourceforge.net/
http://www.tik.ee.ethz.ch/~weiler/papers/wetice02.pdf
http://www.tik.ee.ethz.ch/~weiler/papers/wetice02.pdf

