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Abstract: We consider a Riemann problem for gas dynamics equations in two space dimensions, following the
approach by Čanić, Keyfitz, Kim and Lieberman for studying shock reflection phenomena. The initial data con-
sists of two sectors and each discontinuity results in a shock followed by a linear wave in the far field. We derive
regimes, depending on the initial data, for which regular reflection occurs and we pose local free boundary prob-
lems describing the subsonic solution and the position of the reflected shock. Using the CLAWPACK software we
compute numerical solutions modeling strong and weak regular reflection, and we confirm preliminary conjectures
on the structure of the solutions to the above free boundary problems.
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1 Introduction

We study shock reflection phenomena by considering
a Riemann problem for gas dynamics equations. Our
ideas follow the approach of Čanić, Keyfitz, Kim and
Lieberman in analysis of solutions to particular two-
dimensional Riemann problems for systems of con-
servation laws. The first idea in their approach is to re-
formulate the problem using self-similar coordinates
and to obtain a mixed type system and a free bound-
ary problem for the subsonic state and the position
of the reflected shock. Using the theory of second
order elliptic equations with mixed boundary condi-
tions, developed in [9], and fixed point theorems, local
existence of solutions to this free boundary problem
was shown in the case of steady transonic small dis-
turbance equation [5], unsteady transonic small dis-
turbance equation [1, 3, 12] and the nonlinear wave
system [4, 13]. For general ideas of this approach see
[15], and for more details on the structure of systems
that have been studied see [2]. For related work, we
refer to [6, 7, 8, 23, 24]. Many numerical techniques
have been designed for studying shock reflection (for
example, [10, 11, 14, 16, 17, 18, 20, 21, 22]), while
theoretical understanding of this phenomena is still in-
complete.

In this paper we state a Riemann problem for
gas dynamics equations giving rise to both strong
and weak regular reflection by carefully selecting ini-
tial data and solving quasi-one-dimensional Riemann
problems at the reflection point, we derive free bound-

ary problems for the subsonic state and the reflected
shock, and we compute approximate solutions using
the CLAWPACK software (see [19]).

2 The Riemann problem
We consider system

ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2 + p)y = 0,
(ρE)t + (u(ρE + p))x + (v(ρE + p))y = 0.

(1)

Here, (x, y, t) ∈ R×R×[0,∞), ρ : R×R×[0,∞) →
(0,∞) is the density, u, v : R × R × [0,∞) → R are
the x- and y-velocity components, respectively, p :
R × R × [0,∞) → (0,∞) is the pressure, and E =
(γ−1)−1p/ρ+(u2+v2)/2 is the total specific energy,
where γ > 1 is the gas constant. As in [2, 6, 23],
we rewrite system (1) using self-similar coordinates
ξ = x/t and η = y/t and obtain

(ρU)ξ + (ρV )η + 2ρ = 0,

(ρU2 + p)ξ + (ρUV )η + 3ρU = 0,

(ρUV )ξ + (ρV 2 + p)η + 3ρV = 0, (2)
(U(ρẼ + p))ξ + (V (ρẼ + p))η + 2(ρẼ + p)

+ ρ(U2 + V 2) = 0,

where Ẽ := (γ−1)−1p/ρ+(U 2+V 2)/2, U := u−ξ
and V := v − η. Clearly, when system (2) is lin-
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earized about a constant state U ∗ = (ρ∗, u∗, v∗, p∗),
the system changes type across the sonic circle C∗ :
U2
∗ + V 2

∗ = c2(ρ∗), where c2(ρ) := γ p/ρ. More
precisely, system (2) is hyperbolic outside of C∗.

Using the Rankine-Hugoniot relations, a shock
between states U 0 = (ρ0, u0, v0, p0) and U =
(ρ, u, v, p), given by η = η(ξ), satisfies

σ± :=
dη

dξ
=

U0V0 ±
√

c2(U2
0

+ V 2
0
− c2)

U2
0
− c2

, (3)

dη

dξ
= −U − U0

V − V0

, (4)

ρ0 (U0 σ± − V0) (V − V0) = p − p0, (5)

and
p − p0 =

c2(ρ0)

B
(ρ − ρ0), (6)

where

B :=
γ + 1

2
− γ − 1

2

ρ

ρ0

and c2 =
ρ

ρ0

c2(ρ0)

B
.

Similarly, a linear discontinuity η = η(ξ) between
states U 0 and U satisfies dη/dξ = V/U = V0/U0

and p = p0.
For simplicity, we assume γ = 2. We consider

Riemann data for system (1) consisting of two sectors:

U(x, y, 0) =

{

U1, if − ky < x < ky,

U0, otherwise, (7)

where U 0 := (ρ0, u0, 0, p0) and U1 := (ρ1, 0, 0, p1).
We assume that p0 > p1 > 0 and ρ1 > 0 are fixed,
and that ρ0 and u0 are given by

ρ0 =
p1 + 3p0

3p1 + p0

ρ1 (8)

and

u0 =

√

2(1 + k2)

ρ1

p0 − p1√
p1 + 3p0

. (9)

The parameter k > 0 will be specified in the next
section, depending on p0 and p1.

3 Conditions on the parameter k

In this section we find a solution to the Riemann prob-
lem (1), (7) in the hyperbolic part of the domain and
we investigate how to choose the parameter k so that
the problem leads to regular reflection.

Far from the origin, the one-dimensional Rie-
mann problem along the line x = ky, y > 0, with
states U 1 and U0, on the left and on the right, results

in a shock S1 : x = ky + wt, connecting U 1 to an
intermediate state U a = (ρa, ua, va, pa), and a linear
wave l1 : x = ky +αt, connecting U a to U0. We find

ρa = ρ0, ua =
1√

1 + k2

√

2

ρ1

p0 − p1√
p1 + 3p0

,

va = −kua, pa = p0,

w =

√

1 + k2

2ρ1

(p1 + 3p0) and α = u0 < w.

Symmetrically, in the far field, the one-dimensional
solution along the line x = ky, y < 0, with states
U0 and U1 on the left and on the right, consists of
a linear wave l2 : x = −ky + αt, between U 0 and
an intermediate state U b = (ρa, ua,−va, pa), and a
shock S2 : x = −ky + wt, between U b and U1.

We denote the sonic circles for the states U 0, U1,
Ua and U b by C0, C1, Ca and Cb, respectively. Fur-
ther, we denote the projected point of intersection of
the shocks S1 and S2 by Ξs := (ξs, ηs), and we note
that ξs = w and ηs = 0. Suppose that ρ1 > 0 and
p0 > p1 > 0 are fixed and let ρ0 and u0 be as in
(8)-(9). We distinguish four regions depending on the
value of the parameter k.

Region A: The value of k is such that the point Ξs

is inside at least one of the circles C1, Ca or Cb. In
this case, shocks S1 and S2 do not intersect at ξ-axis
and regular reflection does not occur. We claim that
there exists a value kA, depending on p0 and p1, such
that for k ∈ (0, kA) we have Ξs ∈ C1 ∪ Ca ∪ Cb.

Region B: The value of k is such that Ξs /∈
C1 ∪ Ca ∪ Cb. Therefore, Ξs is hyperbolic with re-
spect to the states U a and U b. We further assume
that for this value of k the quasi-one-dimensional Rie-
mann problem at Ξs with states U b and Ua, on the left
and on the right, respectively, does not have a solution
consisting of two shocks. We claim that there exists
kC > 0, depending on p0 and p1, such that this situa-
tion occurs if k ∈ (kA, kC).

Note that the quasi-one-dimensional Riemann
problem at point Ξs has a solution consisting of two
shocks if the shock polars S+(U b) and S−(Ua) inter-
sect. We recall equations (3)-(6) and note that shock
polars for state U 0 = (ρ0, u0, v0, p0) with respect to a
point Ξ∗ = (ξ∗, η∗) can be parametrized as

p(ρ) = p(ρ0) +
c2(ρ0)

B
(ρ − ρ0),

v(ρ) = v(ρ0) +
p(ρ) − p(ρ0)

ρ0((u0 − ξ∗)σ± − (v0 − η∗))
,

u(ρ) = u0 − σ±(v(ρ) − v0),

where σ± is a function of ρ given by (3). Note that in
our case ξ∗ = w and η∗ = 0. We consider projections
of shock polars S±(U b) and S±(Ua) in (ρ, v)-plane.
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Example 1. Let the Riemann data (7) be given by
ρ1 = p1 = 1, p0 = 2 and k = 0.8. We find that the
point Ξs is hyperbolic with respect to the states U a

and U b, however the projected shock polars S+(U b)
and S−(Ua) do not intersect (Fig. 1).
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Figure 1: The projected shock polars S+(U b) and
S−(Ua) in (ρ, v)-plane do not intersect.

By symmetry, it is clear that S+(U b) and S−(Ua)
intersect at points where v = 0. From the above equa-
tions describing shock polars, we have that intersec-
tions of projected shock polars S+(U b) and S−(Ua)
in the (ρ, v)-plane correspond to intersections of po-
lars in the (ρ, u, v, p)-space.

Example 2. The initial data (7) is given by ρ1 =
p1 = 1, p0 = 2 and k = 1.1665. We
find Ua = (1.4, 0.34806,−0.40566, 2), U b =
(1.4, 0.34806, 0.40566, 2) and Ξs = (2.87304, 0).
The point Ξs is hyperbolic with respect to states U a

and U b, and the shock polars S+(U b) and S−(Ua)
are tangent (Fig. 2). Their intersection is

UR = (2.04, 0.95024, 0, 4.37037).

We also find that Ξs is inside the sonic circle CR for
state UR.
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Figure 2: The projected shock polars S+(U b) and
S−(Ua) in (ρ, v)-plane are tangent.

Example 3. We consider the Riemann initial data
with ρ1 = p1 = 1, p0 = 2 and k = 1.172. We find

that the point Ξs = (2.88228, 0) is hyperbolic with re-
spect to states U a = (1.4, 0.34695,−0.40662, 2) and
U b = (1.4, 0.34695, 0.40662, 2). Moreover, the shock
polars S+(U b) and S−(Ua) intersect at two points
UR = (1.99748, 0.89314, 0, 4.17018) and UF =
(2.09186, 1.02142, 0, 4.4255) (see Fig. 3). We fur-
ther note that Ξs is subsonic with respect to both UR

and UF .
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Figure 3: The projected shock polars S+(U b) and
S−(Ua) in (ρ, v)-plane.

Region C: We claim that for ρ1 > 0, p0 > p1 > 0
and ρ0 and u0 as in (8)-(9), there exists k∗, depending
on p0 and p1, such that for k ∈ (kC , k∗) we have
(a) Ξs /∈ C1 ∪ Ca ∪ Cb,
(b) the quasi-one-dimensional Riemann problem at
the point Ξs has two solutions (each consisting of two
shocks and an intermediate state), and
(c) Ξs is subsonic for both intermediate states in these
two solutions.

Example 4. Let the Riemann data (7) be given with
ρ1 = p1 = 1, p0 = 2 and k = 2. We note that
the point Ξs = (4.1833, 0) is supersonic with respect
to the states Ua = (1.4, 0.23905,−0.47809, 2) and
U b = (1.4, 0.23905, 0.47809, 2). Further, the shock
polars S+(U b) and S−(Ua) intersect at two points
UR = (1.86264, 0.46785, 0, 3.58345) and UF =
(3.07493, 2.33792, 0, 13.9099) (see Fig. 4). We no-
tice that Ξs is supersonic with respect to the state UR

and subsonic with respect to the state UF .

Region D: We claim that, for ρ1 > 0, p0 > p1 > 0
and ρ0 and u0 as in (8)-(9), if k > k∗, then
(a) Ξs /∈ C1 ∪ Ca ∪ Cb,
(b) the quasi-one-dimensional Riemann problem at
the point Ξs has two solutions, each consisting of
two shocks and an intermediate state (we denote these
two intermediate states by UR = (ρR, uR, 0, pR) and
UF = (ρF , uF , 0, pF ) and assume ρR < ρF ), and
(c) the point Ξs is supersonic with respect to the state
UR and subsonic with respect to the state UF .

We graph curves kA(p0/p1), kC(p0/p1) and
k∗(p0/p1), in the case ρ1 = 1, in Fig. 5.
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Figure 4: The projected shock polars S+(U b) and
S−(Ua) in (ρ, v)-plane.
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Figure 5: Curves kA, kC and k∗.

4 The free boundary problems

4.1 Strong regular reflection
We consider Riemann problem (1), (7) where ρ1 > 0,
p0 > p1 > 0 and k ∈ (kC ,∞). In this case
the point Ξs of intersection of shocks S1 and S2 is
outside of the sonic circles C1, Ca and Cb, and the
quasi-one-dimensional Riemann problem at Ξs with
states U b and Ua, on the left and on the right, re-
spectively, has two solutions, each consisting of two
shocks (we call these shocks “reflected shocks”). We
denote the intermediate states for these two solutions
by UR = (ρR, uR, 0, pR) and UF = (ρF , uF , 0, pF ),
where ρR < ρF . Recall that the point Ξs is subsonic
with respect to UR if k ∈ (kC , k∗) and that Ξs is sub-
sonic with respect to UF for all k ∈ (kC ,∞). We
assume that the value of our solution at the point Ξs is
given by

U s := U(Ξs) =

{

UR, if k ∈ (kC , k∗),

UF , if k ∈ (k∗,∞).

Hence, Ξs is subsonic with respect to the state U s

and the reflected shocks become transonic. Note that
by causality they cannot exit the sonic circle Cs for
the state U s and, hence, they are curved. Since our
configuration is symmetric, we will formulate the free
boundary value problem in the upper half-plane. We
denote the transonic shock by S ′

1 and we note that
S′

1 separates the constant states U 0 and Ua from the
nonuniform state U = (ρ, u, v, p) behind the reflected
shock. Further, we define Σ := {(ξ, η(ξ) : ξ < ξs}
and Σ0 := {(ξ, 0) : ξ < ξs}, and we denote the do-
main between Σ and Σ0 by Ω.

PSfrag replacements
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η
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Σ
S′

1 S1

Σ0

Cs

C0

Ξs

Figure 6: Strong regular reflection.

Formulation of the free boundary problem:
Given ρ1 > 0, p0 > p1 > 0 and k ∈ (kC ,∞), find
ρ, u, v, p such that

(a) system (2) holds in Ω,
(b) jump conditions (3)-(6) hold on Σ : η = η(ξ),
(c) ρη = uη = pη = v = 0 hold on Σ0, U(Ξs) =

U s and η(ξs) = 0.

4.2 Weak regular reflection

We consider Riemann problem (1), (7) with ρ1 > 0,
p0 > p1 > 0 and assume k ∈ (k∗,∞). Hence,
the point Ξs is supersonic with respect to the states
Ua and U b and, moreover, the quasi-one-dimensional
Riemann problem at Ξs has two solutions with inter-
mediate states UR and UF , where ρR < ρF . We
assume that the solution at the point Ξs is given by
U s := U(Ξs) = UR. Hence, the point Ξs is super-
sonic with respect to U s. Again, because our con-
figuration is symmetric, we will pose the free bound-
ary value problem in the upper half-plane. We de-
note the reflected shock by S ′

1 and note that it is rec-
tilinear in a finite neighborhood of the point Ξs sep-
arating constant states U a and UR. Let us denote
its intersection with the sonic circle Cs for the state
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U s by ΞR = (ξR, ηR), and further let us denote in-
tersection of Cs and the ξ-axis by Ξ′

R = (ξ′R, 0).
The part of the reflected shock inside the sonic circle
Cs is transonic and curved. Let us denote its equa-
tion by η = η(ξ) and let us note that S ′

1 separates
the constant states U 0 and Ua from the nonuniform
state U = (ρ, u, v, p) behind S ′

1. We further de-
note closed part of the sonic circle Cs between points
ΞR and Ξ′

R by σ0, Σ := {(ξ, η(ξ)) : ξ < ξR},
Σ0 := {(ξ, 0) : ξ < ξ′R} and the domain between
Σ0, Σ and σ0 by Ω.PSfrag replacements

Ω

η

ξ

Σ
S′

1

S1

Σ0

Cs

C0

Ξs

ΞR

Ξ′

R

σ0

Figure 7: Weak regular reflection.

Formulation of the free boundary problem:
Given ρ1 > 0, p0 > p1 > 0 and k ∈ (k∗,∞), find
ρ, u, v, p such that

(a) system (2) holds in Ω,
(b) jump relations (3)-(6) hold on Σ : η = η(ξ),
(c) ρη = uη = pη = v = 0 hold on Σ0, U = U s

holds on σ0 and η(ξ′R) = η′R.

5 Numerical examples
We consider system (1) with γ = 2 and the Riemann
data consisting of two sectors:

U(x, y, 0) =

{

U1 in the first quadrant,
U0 otherwise,

where U 0 = (ρ0, u0, v0, p0) and U1 = (ρ1, 0, 0, p1).
We assume ρ1, p1 > 0, we take

ρ0 =
p1 + 3p0

3p1 + p0

ρ1, u0 = v0 =

√

2

ρ1

p0 − p1√
p1 + 3p0

,

and we choose p0 so that regular reflection occurs.
Each of the two initial discontinuities results in a
shock and a linear wave. The numerical solutions
below are found using the CLAWPACK software
(http://www.amath.washington.edu/ claw/).

Example 5. Let U 1 = (1, 0, 0, 1) and p0 = 1.55.
Therefore, ρ0 = 1.24176 and u0 = v0 = 0.32723.
We find that the shock polars S+(U b) and S−(Ua)
are tangent, intersecting at the point UR. Further, Ξs

is subsonic with respect to the state UR and we have
strong regular reflection (Fig. 8).
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Figure 8: Pressure at t = 0.2.

Example 6. Let U 1 = (1, 0, 0, 1) and let p0 = 1.2.
We find ρ0 = 1.09524 and u0 = v0 = 0.131876.
Shock polars through states U a and U b intersect at
two points, UR and UF , with ρR < ρF . We note that
Ξs is supersonic with respect to the state UR. The
corresponding solution results in a weak regular re-
flection (Fig. 9).
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Figure 9: Pressure at t = 0.2.
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6 Conclusion
In this paper we set up the stage for analysis of
two-dimensional Riemann problems for gas dynamics
equations using the approach by Čanić, Keyfitz, Kim
and Lieeberman. We derive regimes in which regular
reflection occurs and we pose free boundary problems
for the subsonic state and the reflected shock. Our nu-
merical results confirm the expected structure of solu-
tion which is analogous to studies in [1, 3, 4, 12, 13].
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[20] J. Li, M. Lukačova-Medvidova, G. Warnecke,
Evolution Galerkin schemes applied to two-
dimensional Riemann problems for the wave
equation system, Disc. Cont. Dyn. Syst. 9, 2003,
pp. 559–576.

[21] C. W. Schulz-Rinne, J. P. Collins, H. M. Glaz,
Numerical solution of the Riemann problem for
two-dimensional gas dynamics, SIAM J. Sci.
Comput. 14, 1993, pp. 1394–1414.

[22] A. M. Tesdall, R. Sanders, B. L. Keyfitz, The
triple point paradox for the nonlinear wave sys-
tem, SIAM J. Appl. Math. 67, 2006, pp. 321–336.

[23] T. Zhang, Y. Zheng, Conjecture on the struc-
ture of solutions of the Riemann problems for
two-dimensional gas dynamics systems, SIAM J.
Math. Anal. 21, 1990, pp. 593–630.

[24] Y. Zheng, Systems of conservation laws : two di-
mensional Riemann problems, Birkhauser 2001.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007         243


