
Evolution Structure of a Process and Resource Models-based Simulation
for the Supply Chain Management

PYOUNG YOL JANG

Science & Technology Policy Institute (STEPI)
26th Fl., Specialty Construction Center 395-70, Shindaebang-dong, Seoul 157-714

REPUBLIC OF KOREA

Abstract: Many commercial and academic simulation tools have been released to capture the operating strategies
necessary to enhance the efficiency of the supply chain. However, the supply chain’s dynamic nature caused due to
the concurrent flow of various parts as well as sharing of different types of resources requires inevitable
hand-woven codes to fully implement all the activities in modeling simulation. This prohibits the system analysts
from rapidly and effectively modeling and analyzing the supply chain. Generally, the supply chain consists of
various types of subsystems like manufacturing system, transportation system, and distribution. In particular the
manufacturing system controls the production of the subassembly, assembly, and final product, which plays an
essential role in the whole supply chain. Hence, the objective of the paper is to address the evolution structure of a
process and resource models-based simulation useful for rapid supply chain analysis in the manufacturing system.
This research will help overcome the disadvantages of all the existing simulators with regard to supply chain
control and support automated solutions for complex scheduling, planning, and design problems.

Keywords: Supply chain management, Simulation, Manufacturing, Process and resource models

1 Introduction
Many commercial and academic simulation tools have
been released to capture the operating strategies
necessary to enhance the efficiency of the supply chain.
However, the supply chain’s dynamic nature caused
due to the concurrent flow of various parts as well as
sharing of different types of resources requires
inevitable hand-woven codes to fully implement all
the activities in modeling simulation. This prohibits
the system analysts from rapidly and effectively
modeling and analyzing the supply chain. Generally,
the supply chain consists of various types of
subsystems like manufacturing system, transportation
system, and distribution. In particular the
manufacturing system controls the production of the
subassembly, assembly, and final product, which plays
an essential role in the whole supply chain. A
manufacturing system designed for discrete part
manufacturing consists of various machining and
material handling devices, such as CNC machine tools,
robots, conveyor belts, and AS/RS. The manufacturing
control software must be able to efficiently and
reliably manage and coordinate those devices in order
to ensure the completion of production orders placed
from the business system. In particular, once receiving
the process plans associated with the parts to be

produced, the manufacturing control software is
responsible for resolving several problems, such as
process routing selection, resource allocation,
workpiece scheduling, processing instructions
downloading, progress monitoring, and errors
detection and recovery [2]. Additionally, it must be
able to cope with the dynamic reconfiguration of a
shop floor, the concurrent part movement, and the
unpredictable device failures. Although many
methodologies have been proposed to resolve the
above problems, more practical and efficient tools
necessary to operate the manufacturing system in
real-time have yet to appear. Recently, simulation
became a promising tool useful for manufacturing
sytem design and control due to its powerful and
realistic capability of problem settlement.

To this end, many simulation languages have
been evolving to meet various requirements of the
manufacturing system design and control.
General-purpose languages such as FORTRAN,
BASIC, COBOL, PASCAL, C were initially used.
However, these languages could not easily support
modeling the manufacturing system, since the users
should define the complex simulation logic for
dynamic and concurrent part flows. They are usually
used in education to understand the mechanism of

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 143

mailto:jangpy@stepi.re.kr

simulation and in some special purpose simulation
areas, such as, heat transfer analysis and atomic
reaction analysis.

The characteristics of the first-generation and
the second generation simulation software were
described by the previous research [4]. The
first-generation of simulation software including
GPSS, SIMULA, SIMSCRIPT, SIMAN, and SLAM.
was developed for general-purpose simulation [8][9],
they have many defects in simulating manufacturing
system control. A typical disadvantage is that they do
not easily support the material handling properties of
AGV, crane, robot, forklift, truck, cart, conveyor, etc.
Furthermore, they have complex grammars to learn for
programming the manufacturing system control
environment. They model a system in a
process-oriented view, implying that the sequential
processes of the parts are hard-coded and the resources
required to fulfill the processes are specified if
necessary. This implies that the users cannot
effectively figure out the resources’ properties and
their distributed layout. A prototype developed for
manufacturing is MAP/1 [10], which provides text
based simulation models.

The second-generation incluing WITNESS,
FACTOR/AIM, AutoMod, ProModel, and
SIMFACTORY has a user-friendly interface and
support some features for the manufacturing system

like material handling systems. The graphical
animation makes modeling simple. They model
systems in a resource-oriented view, implying that
they view simulation models as the specification and
arrangement of resources and process sequences are
hidden within and across resources. This property
prohibits the user from understanding part routings.
The characteristics of the first and second-generation
simulation software for manufacturing system control
are summarized in Table 1.

To overcome the first and the second generation
simulation software, the process and resource
models-based approach has been proposed [4]. The
objective of the paper is to address the evolution
structure of a process and resource models-based
simulation useful for rapid supply chain analysis in the
manufacturing system. To this end, the paper
describes the following: (1) the evolution structure of
a process model, which represents complex and
flexible process plans for producing parts, (2) the
evolution structure of a resource model, which
represents the characteristics and distributed
relationships of various resources, (3) the evoluation
structure of a simulator engine, which advances the
simulation clock and manages the evolution of the
simulation by investigating various pieces of
information specified in the process and resource
models.

Table 1. Characteristics of the first and second generation simulators

Characteristics First generation Second generation
Major viewpoint Process-oriented view Resource-oriented view
Process plan Linear process plan Not easy to represent
Material handling Mostly not embedded Mostly embedded
User interface Not good Good
Simplicity of usage Not good Good

2 Related Work
A commercial tool for generating the WITNESS
simulation models from the process model is the
PROSIM developed by Knowledge Based Systems,
Inc. [5]. The PROSIM is the extended version of
IDEF3 process capture method. The IDEF3 focuses on
the abstract capture of knowledge about the processes
occurring within a system [7]. It can capture and
describe not what happens at this or that particular
time in a system, but instead what fundamentally
occurs in a system: the dynamic patterns that occur

again and again among elements of a system. One
major motivation behind the IDEF3 development was
the need to speed up business process modeling and to
capture the dynamics of business activities and process
descriptions. The PROSIM is designed to enhance the
productivity of business systems analysis, to facilitate
design data life-cycle management, to support the
project management process, and to facilitate the
system requirement definition process. Since it is not
designed to model the FMS operations, however,
various manufacturing-specific processes and their
precedence relationships cannot be appropriately

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 144

expressed. For example, in the PROSIM grammar, a
fan-out AND junction implies the splitting of objects
flowing through, while a fan-in AND junction implies
the assembly of objects. This semantic is not
applicable to the feature-based machining activities in
discrete-part manufacturing. Another disadvantage is
the lack of resource representation. The PROSIM
simply arranges all the fixed objects on the target
simulator environment.

A program generator is the tool to aid in the
production of computer-coded representations of a
logical model. For example, a job shop simulation
program generator (JSSPG) produces the simulation
model written in SIMSCRIPT according to the
questionnaire [3]. The DRAFT family receives the
entity cycle diagram and then produces
SIMSCRIPTII.5 codes [6]. A discrete-event
simulation generator for operational systems (SGOS)
acquires the operation network and equations and then
generates the SIMAN code [11]. Recently, a
simulation generator for dual card, kanban-controlled
flow shops was suggested [1].

3 Framework
A combined process and resource models-based
approach was proposed by Jang et al.[4]. This research
adopts the concept diagam of this previous research as
shown in Figure 1 [4]. The process plans related to the
parts to be machined are represented as the process
model, which is represented in an AND/OR graph
form, in which a process node contains required
resources and related decision-making rules, and an
edge denotes the precedence relationships among
processes. The resource properties and layout are
represented as the resource model that is represented
as the set of arranged icons of corresponding resources.
The simulator engine reads the two models and then
runs simulation by managing events on the basis of
integrated view of the two models.

Resource properties
and layout

Simulator
engine

Process
model

Resource
model

Simulation results

Process plans

Resource-related
decision-making rules

Process-related
decision-making rules
Part generation-related
information

Figure 1. Concept diagram of the process and
resource models-based approach (Jang et al.,

2005 [4])

4 Evolution of the Process Model
The serialization of processes surrounded with the
AND junctions is called the process sequence problem.
When the simulator engine hits the AND junction
while scanning a process model, it selects directly the
next process to be executed instead of serializing all
the nodes following the AND junction. The user needs
to specify a particular process sequence rule. For
example, the ‘minimum traveling time’ rule selects the
next process to be executed that needs the minimum
travel time of the part from the current location. The
process that can be executed by the same machine tool
as the current location could be selected. The
‘minimum set-up time’ rule selects the next process
that has the minimum set-up time required to prepare
for the process.

As the simulator engine encounters the OR
junction, it selects the specified number of paths or
processes, which is defined as the path selection
problem. If the number of paths is greater than 1, the
selected paths are grouped with AND junctions, which
can be resolved by the process sequencing rule. Hence,
the user needs to specify the two particular rules
associated with the path selection problem and the
process sequence problem, respectively. For example,
the ‘maximum flexibility’ rule selects the paths that
have the largest number of AND junctions, and hence
most processes can be sequenced later on. The
‘resource load balancing’ rule selects the paths that
balance mostly the resource loading, and hence the
paths that contain the more processes assigned to the
less loaded machine tools.

The internal data structure of the process model
consists of the tables for storing individual heads,
processes, AND junctions, and OR junctions, and the
sets for storing the precedence relationship among
processes. In particular, the simulator engine
maintains the three kinds of sets, such as the process
candidate set, the process alternative set, and the
process order set. The process candidate set, expressed
as square bracket [], contains all the processes to be
executed between two AND junctions without any
precedence constraints being violated. According to
the process sequence rule specified by the users, a
candidate process is selected from the set. The process
alternative set, expressed as brace { }, contains all the
paths between the corresponding OR junctions. The
simulator engine then selects the specified number of
paths according to a particular path selection rule and
then picks the next process to be executed according to

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 145

a particular process sequence rule. The process order
set, expressed as round bracket (), contains the
sequenced processes. Every path following the
junction must be mapped to a process order set. It may
contain an element. Only the first process to be
executed will be selected. It should be noted that a set
might contain other sets as members. An exemplary
process model and its corresponding set are shown in
Figure 2.

The process model and its related set shown in
Figure 2 is resolved according to the above procedures
as shown in Figure 3. It starts with invoking the
AND_resolution() procedure, since the set belongs to
the process candidate set. The first elements of the
each process order set are checked whether the three
‘if’ conditions are satisfied. The first element of the
first process order set, P1, does not meet any ‘if’
condition. The simulator engine then checks the first
element of the second process order set, {P6, P7}.
Since it meets the second ‘if’ condition, the
OR_resolution() procedure is invoked. Assume that
the specified number of processes to be selected is 1
and process P6 is selected by the rule specified in the
OR junction. Set {P6, P7} is replaced by process P6
and process P7 is removed from the set. The simulator
engine checks again for the first element of the third
process order set, [P9, P10]. Because it satisfies the
first ‘if’ condition, the function Candidate() is invoked.
Assume that it returns process P9. Process P10 is

removed and inserted into the stored process set.
Finally, the first element of the third process order set
satisfies the third ‘if’ condition, one process is selected
out of process, P1, P6, and P9 according to the process
sequence rule specified in the AND junction. Assume
that P9 is selected. Process P9 is then removed from
the set, and its corresponding process P10 stored in the
stored set replaces process P9. The bold process
symbols in the selected process imply the executed
process and the non-bold process symbols imply the
dummy process that is selected for decision-making in
the set resolution.

The simulator engine continues to take some
actions necessary to perform process P1. For example,
the simulator engine selects a machine tool according
to the resource selection rule specified in the process
model. If the selected resource is idle and is different
from the current part location, the simulator engine
will try to find material transport resources specified
in the resource model. If the selected resource is not
idle, the simulator engine determines whether the part
is moved to the buffer or stays at the current location.
If the selected resource is the current part location, the
simulator starts to perform process P1. At this moment,
the resolution procedure stops temporarily and looks
up the next event in the event list. The simulator
engine continues to resolve the set if the popped event
is associated with the selection of the next process.

 [(P1, P2, {([(P3), (P4)]), (P5)}), ({(P6), (P7)}, P8), ([(P9), (P10)], P11)]

P1

P11

P6

P5P2

P7

P9

P8OO

&OO&

&

P3

P4 &

&&

P10

Figure 2. Sample process model and its corresponding set

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 146

[(P1, P2, {([(P3), (P4)]), (P5)}), ({(P6), (P7)}, P8), ([(P9), (P10)], P11)]

[(P1, P2, {([(P3), (P4)]), (P5)}), (P6, P8), ([(P9), (P10)], P11)]

[(P1, P2, {([(P3), (P4)]), (P5)}), (P6, P8), (P9, P11)]
[(P1, P2, {([(P3), (P4)]), (P5)}), (P6, P8), (P10, P11)]

[(P2, {([(P3), (P4)]), (P5)}), (P6, P8), (P10, P11)]
[({([(P3), (P4)]), (P5)}), (P6, P8), (P10, P11)]

[(P5), (P6, P8), (P10, P11)]
[(P5), (P8), (P10, P11)]

[(P8), (P10, P11)]
[(P8), (P11)]

[(P11)]
 []

P6

P9

P9
P1
P2

P5

P6
P5

P10
P8
P11

Selected
Process

Set

{(P6), (P7)}

Stored
Process

Set

< >
< >
< >

<P10>
<P10>

< >
< >
< >
< >
< >
< >
< >
< >
< >
< >

OR_resolution()

Candidate()

AND_resolution()
AND_resolution()
AND_resolution()

OR_resolution()

AND_resolution()
AND_resolution()
AND_resolution()
AND_resolution()
AND_resolution()

Functions

Create future events for P9
Create future events for P1
Create future events for P2

Create future events for P6
Create future events for P5
Create future events for P10
Create future events for P8
Create future events for P11

Future events

[(P9), (P10)]

{[(P3), (P4)], (P5)}

Figure 3. Sequence of fired rules after process P1

5 Evolution of the Resource Model
Since the resources in the manufacturing system have
interactions to complete the assigned part, the
relationship among resources must be closely
investigated and then the appropriate parameters
captured in defining the resource model are extracted.
A resource can be classified into the three types
according to its functionality: processing, storage,
transport resource which was proposed by Jang et al.
[4]. The processing resource represented as the
machine in the resource model performs the given
process, such as milling, drilling, boring, etc. The
storage resource can be further classified into buffer
and AS/RS. While a buffer stores temporarily the parts
in process, an AS/RS stores the parts and raw
materials for a sufficiently long time. It is assumed
that a part comes out of an AS/RS and it enters the
AS/RS after all processes are finished. The transport
resource can be further classified into material handler
and material transporter. The former includes a robot,
which can pick, move, and put parts. The latter
includes an AGV and a conveyor, which can only be
used to move parts. In other words, the material
handler needs to serve the material transporter in order
to load and unload parts.

6 Evolution of the Simulator Engine
Initially, the simulator engine examines the head
symbols of all the parts in the process model and then
obtains the first arrival time of each part to create
‘part_arrival’ events to be added in the event list. It
also inspects the resource model and then obtains the
first breakdown time of each resource to create the
‘break’ events to be added in the event list. The
simulator engine then starts the simulation cycle: 1) to
obtain the first occurring event, 2) to advance the
simulation clock with respect to the event, 3) to
execute the event, and 4) to generate the associated
future events and put them in the event list. The
simulation cycle will be repeated either until the
specified simulation time is over or until the
predetermined number of parts is produced. The major
events used in the simulator engine, their associated
future events, and their descriptions are summarized in
Table 2.

Although the events are mostly associated with
the status of resources, the part that is finished on a
particular machine tool actively searches for the next
machine according to its process model, instead of
being searched by the empty machines. Hence, the
part that cannot find the next machine is added to the
part list. The machine that has just finished and sent
out a part will try to find a part from the part list
without regard to the current location of the part. In
other words, the part that is finished on a machine

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 147

looks for the next machine, but it stays at the current
machine or moves to the buffer and then is added to
the part list, while the machine that becomes empty
looks for a part from the part list.

7 Conclusion
This research addresses the evolution structure

of a process and resource models-based simulation
useful for rapid supply chain analysis in the
manufacturing system. This will help overcome the
disadvantages of the existing simulators with regard to
supply chain control and support automated solutions
for complex scheduling, planning, and design
problems.

Table 2. Major event list

Event Associated future events Description
part_arrival part_arrival, pick_done, A part arrives at the system, which inserts

the next arrival in the event list
pick_done put_done A robot moves and picks a part up
put_done setup_done, process_done,

receive_done, conveyor_done,
AGV_done

A robot moves and puts a part down

robot_break robot_break, robot_up Breakdown occurs in a robot
setup_done process_done The machine setup is finished
process_done pick_done A process is finished
machine_break machine_break, machine_up Breakdown occurs in a machine
tool_break tool_break, tool_up Breakdown occurs in a tool
retrieve_done pick_done An AS/RS retrieves a part
AS/RS_break AS/RS_breakdown, AS/RS_up Breakdown occurs in an AS/RS
conveyor_done pick_done Transport through a conveyor is finished
conveyor_break Conveyor_break, conveyor_up Breakdown occurs in a conveyor
AGV_done pick_done Transport through an AGV is finished
AGV_break AGV_break, AGV_up Breakdown occurs in an AGV

References:
[1] Christenson, K. R. and Dogan, C. A., “A

simulation generator for dual-card
kanban-controller flow shops”, International
Journal of Production Research, Vol. 33, pp.
2615-2631, September 1995.

[2] Cho, H., An Intelligent Workstation Controller for
Computer Integrated Manufacturing, Ph. D.
Dissertation, Texas A&M University, 1993.

[3] Ginsberg, A. S., Markowitz, H. M., and Oldfather,
P. M., “Programming by questionaire”, Rand
Memorandum RM-4460-PR, The Rand
Corporation, Santa Monica, California, April,
1965.

[4] Jang, P. Y., Jones, A., and Cho, H., “A Combined
Process/Resource Models-based Approach to
Shop Floor Simulation”, WSEAS Transactions on
Computers, Vol. 4, No. 9, pp. 1062~1072, 2005.

[5] KBSI, PROSIM User’s Manual, Version 2.2.1,
Knowledge Based Systems Inc., 1996.

[6] Mathewson, S. C., “The application of program
generator software and its extensions to discrete
event simulation modeling”, IIE Transactions, Vol.
16, pp. 3-18, March 1984.

[7] Mayer, R. J., Cullinane, T. P., deWitte, P. S.,
Knappenberger, W. B., Perakath, B., and Wells, M.
S., IDEF3 Process Description Capture Method
Report, KBSI, Texas, 1992.

[8] Pegden, C. D., Introduction to SIMAN, Systems
Modeling Corporation, Pennsylvania, 1982.

[9] Pritsker, A. A. B., Introduction to Simulation and
SLAMII, Systems Publishing Corporation, 1986.

[10] Rolston, L. J., “Modeling flexible manufacturing
system with MAP/1”, Annals of Operations
Research, Vol. 3, pp. 189-204, December, 1985.

[11]Yuan, Y., Dogan, C. A., and Viegelahn, G. L., “A
flexible simulation model generator”, Computers
and Industrial Engineering, Vol. 24, pp. 165-175,
1993.

Proceedings of the 11th WSEAS International Conference on APPLIED MATHEMATICS, Dallas, Texas, USA, March 22-24, 2007 148

	Introduction
	Related Work
	Framework
	Evolution of the Process Model
	Evolution of the Resource Model
	Evolution of the Simulator Engine
	Conclusion

