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Abstract: This method is a “true” meshless method and does not need any “element” or “mesh” but uses a distributed set of 
nodes for both field interpolation and background integration. The Meshless Local Petrov-Galerkin (MLPG) method is adopted 
to solve plane stress/ strain solid mechanics problems. The MLPG method requires only a set of nodes both for the interpolation 
of the solution variables and the evaluation of various integrals appearing in the problem formulation. The MLPG formulation 
including the moving least squares method, the choice of the weight function, the local symmetric weak form (LSWF), and the 
discretization of the weak form are presented. A code based on the MLPG method is developed, and three numerical examples, 
namely, a cantilever beam loaded by tangential tractions at the unclamped edge, an infinite plate with a circular hole subjected 
to a uniform tensile force at infinity, and a hollow circular cylinder subjected to a pressure on the inner surface are 
demonstrated to validate the developed code. 
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       1  Introduction 

A large variety of different meshless methods have been 
developed in the last few years such as the Smooth Particle 
Hydrodynamics (SPH), the Diffuse Element Method (DEM), 
the Element-Free Galerkin (EFG) method, the Hp-Clouds, 
the Reproducing Kernel Particle Method (RKPM), the 
Partition of Unity Finite Element Method (PUFEM), and the 
Meshless Local Petrov-Galerkin method (MLPG). All 
meshless methods share a common feature: only nodes are 
required to describe the interpolation of field variables. The 
major difference among these methods lies in the 
interpolation techniques. Generally, three different 

interpolation techniques used in meshless methods are the 
kernel method, the moving least squares approximation and 
the partition of unity. 
Although the meshless method is just becoming popular in 
recent years, the initial use of this method dates back to the 
late 1970’s.  Lucy   [1] introduced the Smooth Particle 
Hydrodynamics (SPH) for simulating astrophysical 
phenomena.  Monaghan  [2]   provided a  theoretical  aspect  
for  the  interpolation  scheme  of  the  SPH  by  adopting the 
notion of a kernel  function.  This kernel function allows a 
local representation for the trial function. Libersky  and  
Petchek  [3]  applied  this  method  to  solve  solid  
mechanics  problems. Nayroles et al. [4] proposed another 
branch of the meshless method under the name of the 

Diffuse Element Method (DEM). This method is based on the 
moving least squares (MLS) approximation which had been 
developed by Lancaster and Salkauskas [5] for curve and 
surface fitting of random data. Belytschko et al. [6] made 
improvements to the DEM and developed the Element Free 
Galerkin (EFG) method. For example, a high-order 
quadrature rule based on a background mesh of cells was 
used and certain terms in the derivatives of the interpolants, 
which were omitted in the DEM, were included in the EFG 
method. These improvements were found to be necessary for 
achieving good accuracy and convergence. 
Liu et al. [7] introduced a correction function in the kernel of 
the integral transformation in the SPH to impose reproducing 
conditions (i.e., consistency requirements). Adding this 
correction function in the kernel enhances the accuracy of the 
solution when compared with the SPH. This method using 
integral transformation with a corrected kernel function is 
called the Reproducing Kernel Particle Method (RKPM).  
Belytschko et al. [8] have shown that the discrete form of the 
convolution integral yields approximants which are identical 
to those in the MLS approximation. 
Duarte  and  Oden  [9],  and  Melenk  and  Babuska  [10]  
proposed  the  Hp-Clouds method and the  Partition  of  Unity  
Finite  Element  Method  (PUFEM),  respectively. Both 
methods employ a partition of unity to construct the meshless 
approximation. They  recognized that the method based on 
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the moving least squares is a specific case of the partition of 
unity. The Hp-Clouds and the PUFEM allow for an extrinsic 
basis to enhance the solution. 
Similarities  in  some  of  the  above  meshless  methods  
have  been  summarized    by Belytschko et al.[8]. However, 
the above-mentioned meshless methods use background 
cells or shadow elements to integrate a global Galerkin weak 
formulation. The requirement of background cells for 
integration implies that the method is not “truly meshless”. 
The meshless methods are not computationally as efficient 
as finite element methods. It is desirable to use the meshless 
model only in those domains where their greater versatility is 
needed and the finite element model for the rest  of  the  
domain and on the boundary where the  essential  boundary  
conditions  can  be  exactly  satisfied.  Liu  and  Gu  [11]  
coupled the MLPG  method with  either the finite element or 
the boundary element method to enhance the efficiency of 
the MLPG method. 
 
2 MLPG weak formulation 
Consider the following two-dimensional elasto-statics 
problem on the domain Ω  bounded by the boundary Γ : 

,,0, Ω=+ inb ijijσ
                                  (1)              

where σij is the stress tensor,  bi is the body force. The 
boundary conditions are given as follows: 

,

,
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where iu  and it  are the prescribed displacements and 

tractions, respectively, on the boundary Γu and the boundary, 

Γt and ni is the unit outward normal to the boundary Γ, Γu 

and Γt are complementary subsets of  Γ. 
Unlike the Element Free Galerkin (EFG) method which is 
based on the global Galerkin formulation, the present local 
Petrov-Galerkin formulation is constructed over a local sub 
domain Ω s which is located inside the global domain Ω . 
This local sub-domain Ω s is taken to be either a circle or a 
part of a circle in a 2-D problem [12] [13]. 
A generalized local weak form of Eq. (1) and Eq. (2) over a 
local sub-domain Ω s  can be written as follows: 

( ) ( ) ,0, =Γ−−Ω+ ∫∫
ΓΩ

dvuudvb iiiiijij

sus

ασ

              (3) 
 

where  ui  and  vi  are the trial  and the test  functions,  
respectively,  and  Γsu  is the  part of the boundary  ∂Ωs over 
which essential boundary conditions are specified. In 
general, ∂Ωs= Γs ∪ Ls with Γs being the part of the local 
boundary located on the global boundary and Ls being the 
other part of the local boundary over which no boundary 
condition is specified, i.e., Γs = ∂Ωs ∩ Γ and Γs = ∂Ωs - Ls 
(see Fig. 1). In Eq. (3), α is a penalty parameter (α >> 
Young’s modulus/Length ) which is used to impose the 

essential boundary conditions. Also, the dimensions of α are 
such that the two terms in Eq. (3) have the same units. α 
could be a function of  x  but is usually taken to be a constant. 
Henceforth, we also take α to be a constant [14]. 
Using  ( ) jiijjiijijij vvv ,,, σσσ −=   and the divergence 

theorem in Eq. (3) lead to 
 

( ) ( ) ,0, =Γ−−Ω−−Γ ∫∫∫
ΓΩΩ∂

dvuudvbvdvn iiiiijiijijij

suss

ασσ               

(4) 
 
where ni is a unit outward normal to the boundary ∂Ωs. 
It  should  be mentioned that  Eq. (4)  holds  regardless  of the 
size and the shape of Ωs provided   that  Ωs  is  smooth  
enough for the divergence theorem to apply. So, the shape of 
a sub-domain Ωs can be taken to be a circle in 2-D problems 
without loosing generality. 

Applying the natural boundary condition, ijiji tnt == σ   

on Γst where Γst = ∂Ωs ∩ Γt, we get 
 

( ) ( ) ,0, =Γ−−Ω−
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In order to simplify equation (5), the test functions vi are 
chosen such that they vanish on  Ls. This can be 
accomplished by using the weight function wi in the moving 
least squares (MLS) approximation as also the test function 
vi, but the radius ri of the support of the weight function is 
replaced by the radius ro of the local domain Ωs. Using these 
test functions and rearranging Eq. (5), we obtain the 
following local symmetric weak form (LSWF): 
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For 2-D problems, two independent sets of test functions 
should be applied in Eq. (6), which gives 

     

∫∫∫
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where vki is the ith component of the kth test function. For 
simplicity, Eq. (7) can be written in matrix form as: 
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where εv denotes the strain matrix derived from the test 

functions, and σ is the stress vector derived from the trial 
functions. That is, 
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where the superscript i denotes the ith test function. 
Functions v, u, t, and b are defined as follows: 
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The two sets of test functions v in Eq. (10) should be linearly 
independent. The simplest choice for v is 
vij = v δij       or      v = v I, 

 
Where δij is the Kronecker delta and I is the identity matrix. 
As long as the union of all local sub-domains covers the 
global domain, the equilibrium equations (1) and the 
boundary conditions (2) will be satisfied in the global 
domain Ω and on its boundary Γ respectively. 

 
3 Discretization of the weak form 
In the MLPG method, the field variable u(x) is approximated 
by the moving least squares (MLS) technique. This 
approximation is based on three components: a weight 
function of compact support associated with each node, 
polynomial basis functions, and a set of coefficients that 
depend on the position x of the point. 
First, we  consider  a  sub-domain   Ωx  called  the  domain  
of  definition  of the MLS approximation for the trial 
function at the point x, which is located in the problem 
domain Ω The unknown trial approximant uh (x) of the 
function u(x) is defined by 
 
uh (x) = pT(x) a(x),         ∀ x∈ Ωx,                                     (11)                                               

 
where pT(x)= [ p1(x), p2(x),.., pm(x)] is a vector of the 
complete monomial basis of order m, and a(x) is a vector 
containing unknown coefficients   aj(x),  j = 1,2,…,m.  
The coefficient vector a(x) is given by the linear relation: 
 
A(x) a(x) = B(x) û,                                                             (12)                                                              
where  

        

(13) 
 

where wi(x) is the weight function associated with the node i 
with wi(x) > 0  for all x in the support of wi(x),  xi denotes the 
value of  x at node i,  n is the number of nodes in Ωx for 
which the weight functions wi(x) > 0, and ûi  is the fictitious 
nodal value and need not equal uh(xi).  
As can be seen from Eq. (12), the unknown coefficients a(x) 
can be obtained only if A(x) defined by Eq. (13) is non-
singular. So, a necessary condition for a well-defined MLS 
approximation is that at least m weight functions are non-zero 
(i.e. n ≥  m ) for each sample point x ∈ Ω. 
Substituting for a(x) into Eq. (11) gives the following relation 
for nodal interpolation 
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φi(x)  is usually called the shape function of the MLS 
approximation corresponding to node i. 
Substituting the MLS approximation (14) into Eq. (8) and 
summing over all nodes leads to the following discretized 
system of linear equations: 
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where v(x, xi) is the value at x of the test function, 
corresponding to node i, and 
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Eq. (16) can be simplified into the following system of linear 
algebraic equations in û j. 
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where N is the total number of nodes. The so-called 
“stiffness” matrix K and the “load” vector f are defined by 
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4 Validation of the Code 
Based on the MLPG method described above, we have 
developed a computer code to solve plane stress/strain 
elastostatics problems. This code is validated by solving the 
following three elasticity problems each of which has an 
analytical solution (exact solution taken from [14]). 
. 

 The first problem studied is a cantilever beam (Fig. 1) 
deformed by applying a tangential traction on the 
unclamped end. We impose the following boundary 
conditions at the bounding surfaces of the beam. 

Displacements are specified at nodes on the left 
edge, and tractions are prescribed at the remaining three 
surfaces of the beam. This is solved as a plane stress 
problem. In a consistent set of units, we take P = 1 (is the 
resultant of the tangential tractions applied at the unclamped 
edge), E  = 1000MPa,  D = 1m,   L = 8m,  v = 0.25  and the 
penalty parameter α= 108.  A regular nodal mesh of 72 nodes 
with 18 nodes along the x1 direction and 4 nodes along the x2 
direction is used. The radius ro of the local sub-domain is 
taken to be the distance between two neighbouring nodes in 
x2 direction. In the computation, 8x 8 Gauss points are used 
in each local sub-domain Ωs and 8 Gauss points are used 
along each section of Γs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x2

Figures 2, 3 and 4 show, respectively, the variations of the 
horizontal displacement u1, the vertical displacement u2, and 
the longitudinal stress σ11 vs. x1 on the top face. It is clear 
that these agree very well with the analytical solution. 
Figures 5 and 6 illustrate the through-the-thickness variation 
of the normal stress σ11 and the shear stress σ12 at x1 = L/2 
=4m. Both stress components are almost the same as those in 
the exact solution. 
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Figure 1: The cantilever beam 
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Figure 2:  Horizontal displacement  
                 u1 vs. x1 on the top face 
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Figure 3:  Vertical displacement  Figure 7a:  Vertical displacement 
 u2  vs. x1 on the top face                  u2  vs. x1 on the top face 
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 Figure 7b:  σ11 vs. x1 on the top face. 

Figure 4:  σ11 vs. x1 on the top face 
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Figure 7c:  σ11 vs. x2  at x1 = 4m 

Figure 7d:  σ12 vs. x2 at x1 = 4m 

Figure 5:  Through-the-thickness  
distribution of σ11 on the plane x1 = 4m 

Figure 6:  Through-the-thickness 
distribution of σ1 2

 
We now examine if the MLPG method gives good results for 
nearly incompressible materials by taking v=0.4999. As can 
be seen in Figs. 7a-7d, the numerical solution matches well 
with the analytical solution. Figures 7c and 7d show 
respectively the normal stress σ11 and the shear stress σ12 at 
x1 = L/2 =4m along the thickness direction. It is found that 

 on the plane x1 = 
4
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the MLPG method does not exhibit the locking phenomenon 
seen in the Finite Element Method. 
The deflection at point A (shown in Fig. 3) computed by the 
FE and the MLPG methods are compared in the following 
table; the FE solution is taken from [6]. A plane strain state 
rather than a plane stress state of deformation is assumed to 
prevail in the beam. 
 

u2
num / u2

exact  at point A (plane strain case) 
Method ν = 

0.25 
ν = 

0.4999 
FEM : Q4 0.824 0.027 

MLPG : linear 1.000 1.007 
MLPG : quadratic 1.000 1.000 

 
Table 1.1 

 
It is obvious that the FEM using the 4-node quadrilateral 
element (Q4) performs poorly especially when v = 0.4999 
while the MLPG method works well. A similar trend was 
observed by [15] in their analysis of the problem. 
 Consider an infinite plate with a circular hole and 

subjected to a unit normal traction at infinity in the  x1 
direction. Due to the symmetry of the problem about the 
horizontal and the vertical centroidal axes, only the 
upper right quadrant of the plate, shown in Fig. 8, is 
considered. This quadrant is modelled as a square plate 
with the length of a side equal to 4a. Boundary 
conditions resulting from the symmetry of the problem 
are imposed on the left and the bottom edges, and the 
boundary of the hole is traction free. 

 
 
 
 
 
Traction boundary conditions are imposed on the right  (x1  = 
4a) and the top  (x2  = 4a) edges. A plane stress state of 
deformation is assumed to prevail in the plate. In a consistent 
set of units, we take E = 1000MPa, v = 0.25, and a = 1m in 
this computation. Two different nodal meshes with 49 ( 7x7: 
7 nodes in the r direction, 7 nodes in the θ direction) and 81 
(9x9) nodes are considered. 9x9 Gauss points are used in 
each local sub-domain Ωs and 9 Gauss points are used on 
each section of Γs for numerical integration. 
The stress σ11 at x1 =0 using a linear basis is compared with 
the analytical solution in Fig.9. It can be seen that the stress 
σ11 is very well approximated when the number of nodes is 
increased to 81.  
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σ
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x2  
 
 
 Consider a hollow  cylinder subjected  to  tractions  as 

shown  in  Fig.  10.  Due to the symmetries about the 
horizontal and the vertical centroidal axes, only a quarter 
of the cylinder is modelled with 840 nodes. A plane 
strain state of deformation is assumed to prevail in the 
plate. In a consistent set of units, we take E = 1000MPa, 
v  =  0.25, a  =  5m, b = 10m, pb = 0 Pa, pa = 1Pa. 
Symmetry boundary conditions are applied on the left 
and the bottom edges. 

 
 
                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Weight function and the number of quadrature points used 
are the same as in the previous problem of an infinite plate 
with a circular hole. 
Figures 11 a-c  show  that  the  deformation  and  the  stress  
fields  obtained  by  the  MLPG method   match  well  with  
the analytical solution. It is noted that the MLPG method 
satisfies the traction boundary conditions (pa = -1Pa at r = 
5m and pb = 0Pa at r = 10m) almost exactly. Fig. 11d 
verifies that  σrr + σθθ is constant throughout the wall of the 
cylinder. 

Figure8:  The analysis domain for a 
                  plate with a circular hole. 

Figure 9:  σ11 vs. x2 at x1 = 0. 

b 

pa

Pb

a r 

Figure 10 :  A hollow circular cylinder 
with pressure applied on the inner and 
outer surfaces. 
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5 - Conclusion 
The MLPG method proposed in this paper is an effective 
numerical technique for the solution of the linear elastostatic 
plane problems. 
A system of linear algebraic equations has been deduced 
starting from the moving least squares approximation and the 
weak formulation. The approximation of the field variable in 
the MLPG method is based on three components: a weight 
function of compact support associated with each node, 
polynomial basis functions, and a set of coefficients that 
depend on the position of the point. The implementation of a 
numerical code has thus been completed using the Gaussian 
weight function.  

Figure 11(a) 

Figure 11(b) 

The computational examples presented above have shown 
that the current MLPG method could be applied efficiently to 
the analysis of the plane strain/stress solid mechanics 
problems. Comparison of the numerical results obtained by 
the present MLPG method, with those calculated from the 
analytical solution, shows that the MLPG technique achieves 
a satisfaction degree of accuracy.   
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