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Abstract: - In this paper an exact and complete analysis of average design complexities of  Lloyd-Max's scalar 
quantizers, scalar compandors and scalar quantizers designed using the hybrid model is carried out. The 
average design complexity depends on arithmetic complexity, memory complexity and implementation 
complexity. It is demonstrated that for a fixed number of quantizaton levels N, scalar compandors have the 
smallest and the Lloyd-Max's scalar quantizers have the largest complexity. Furthermore, it is shown that for a 
fixed number of quantizaton levels N the average design complexity of hybrid scalar quantizers is significantly 
smaller than the average design complexity of Lloyd-Max's scalar quantizers. Combining this result with the 
fact that the performances of hybrid scalar quantizers are almost equal to the optimal performances of Lloyd-
Max's scalar quantizers, the usability of recently developed hybrid model is confirmed.  
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1   Introduction 
     Quantization is the process of replacing analog 
samples with approximate values taken from set of 
allowed values [1, 2, 3]. An N-level scalar quantizer 
can be defined as a functional mapping of the set of 
real numbers R onto the set of the output 
representation. The set of the output representations, 
called the representation levels {y1, y2,…, yN} 
constitutes the code book that has the size |C|=N. 
Associated with every N-level scalar quantizer is 
partition of the set of real numbers R into N cells 
Ri==(xi-1, xi],  i=1,…,N, where xi i=0,1,…,N are 
decision thresholds. Therefore, a quantizer can be 
uniquely determined by its partition and the set of 
the output representation. Hence, design of scalar 
quantizer is equivalent to selection of the 
representation levels and the partition or cells for a 
fixed number of quantization levels N. Every 
quantizer can be viewed as the combination of 
encoder and decoder [4]. Encoder transmits the 
index i of the selected representation level yi, 
assigned to an input sample. Decoder reconstructs 
the corresponding reproduction value by using table-
lookup procedure [4].  
     There are several models of scalar quantizers that 
are based on different quantization techniques. The 
principal goal of scalar quantizer design is to decide 
which model will be used while designing as well as 
to select the encoder and decoder that provide the 
best possible reproduction of the original signal  

 
 
attaining the smallest possible design complexity. 
However, to determine a quantizer design 
complexity is not a straightforward task. Until now 
there has not been much theoretical or even 
quantitive comparison among the design 
complexities of scalar quantizers that are based on 
different models. Consequently, much work is still 
need in order to determine which model provides the 
best performances versus complexity trade off and 
to gain an understanding why certain complexity-
reducing models are better than others.  
     In this paper, we propose and perform an exact 
and complete analysis of the average design 
complexities of scalar quantizers based on different 
models. We define the average design complexity as 
the arithmetic mean of the arithmetic complexity, 
implementation complexity and memory 
complexity. Note that one of the reasons of carrying 
out the analysis of average design complexities is to 
determine if the recently developed hybrid model of 
scalar quantizers [1, 2] reduces the average design 
complexity of Lloyd-Max's quantizers. Hence, using 
the proposed definition of the complexity, we 
performed and demonstrated the quantitative 
comparison among average design complexities of 
compandors, hybrid quantizers and Lloyd-Max's 
quantizers when the number of quantization levels 
varies N=32, 64, 128, 256, 512, 1024.  
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2.   Average design complexity 
     The average design complexity of scalar 
quantizer is usually specified as arithmetic mean of 
the arithmetic complexity, memory complexity and 
implementation complexity [3]. Arithmetic (or 
computational) complexity is defined as the number 
of arithmetic operations per sample that must be 
performed when encoding or decoding. Memory (or 
storage) complexity is defined as amount of 
auxiliary storage or memory space that is required to 
store the parameters that specify the considered 
scalar quantizer model (for encoding and decoding). 
Implementation complexity is defined as the number 
of elementary digital blocks (circuits) that are 
needed for scalar quantizer construction.  
Let us denote the aforementioned complexities with:  
A (arithmetic complexity), M (memory complexity), 
I (implementation complexity). The average design 
complexity can be defined with [3]: 
 IwMwAwK 321 ++=                   (1) 

where w1, w2, w3 are the weights of arithmetic 
complexity, memory complexity and 
implementation complexity. Assuming that all 
weights are equal, average design complexity is 
defined as arithmetic mean of the arithmetic 
complexity, memory complexity and 
implementation complexity: 

 ( )IMAK ++
3

1
= .   (2) 

Using Eq. (2) we perform the analysis when the 
quantizer model corresponds to compandor, hybrid 
quantizer and the Lloyd-Max's quantizer. It is very 
important to point out that in the following analysis 
we consider the equality of arithmetic and 
implementation complexities. This equality can be 
assumed in case of scalar quantizers that are 
modeled by using elementary digital blocks which 
are called primitive because of performing standard 
(elementary) functions. In such a case it is obvious 
that arithmetic and implementation complexities are 
defined with the number of primitive blocks, while 
memory complexity is defined with the number of 
parameters that describe scalar quantizer model. 
 
2.1. Analysis of Lloyd-Max's quantizer 
average design complexity 
     Lloyd and Max proposed an algorithm to 
compute optimum quantizers using the mean-square 
error distortion measure [4, 5, 6, 7]. The analysis of 
Lloyd-Max's quantizer average design comlexity 
begins by considering the Lloyd-Max's quantizer 
implementation that is shown in Fig. 1. The  
implementation   of   the      Lloyd-Max's  quantizer

 
 

Fig. 1. Implementation of Lloyd-Max's quantizer 
 

 
Fig. 2. Implementation of selector with primitive 

blocks (two comparators and one multiplier) 
 

consists of blocks indicated with S1
LM, S2

LM,..., SN
LM 

that represent selector functions, defined by 
Si

LM(x)=1 if x∈ Ri and 0 otherwise, and the 
multipliers indicated by circles that have weight 
values given by the corresponding output 
representation y1, y2,..., yN. From the Fig.1. it is 
obvious that the operation of quantization can be 
expressed in the following form [4]: 

 ( )∑
1=

=ˆ=)(
N

i
ii xSyxxO .   (3) 

It is very important to point out that the selector 
operation, although a relatively simple building 
block, is not primitive since it can be further 
decomposed into elementary comparators. Thus, the 
selector functions can be implemented with two 
comparators, addition or multiplicaton, as depicted 
in Fig. 2., or using logical AND device [4]. 
Considering the fact that each of N selector 
functions can be replaced by three primitive blocks 
we derive the following expression for the 
arithmetic complexity of Lloyd-Max's scalar 
quantizers: 

)(1+)(+)(3= addersmultiplierNselectorsNALM

1+4= NALM .                                       (4) 
Since the arithmetic complexity is considered equal 
to implementation complexity we can use Eq. (4) to 
calculate the implementation complexity. 
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     In order to define the expression for memory 
complexity it is necessary to define the set of scalar 
quantizer parameters when considering particular 
model of scalar quantizer. The set of Lloyd-Max's 
quantizer parameters consists of N representation 
levels and N+1 decission thresholds which define 
the memory complexity of Lloyd-Max's scalar 
quantizers denoted with MLM: 

( )+= levelstionrepresentaNM LM  

        ( ) 1+2=1++ NthresholdsdecissionN . (5) 
Combining Eqs. (2), (4) and (5) we can derive the 
expression that provides quantitive evaluation of 
average designing complexity in case of Lloyd-
Max's scalar quantizers, denoted with KLM: 

 ( )3+10
3

1
= NK LM .   (6) 

 
 
2.2 Analysis of scalar compandor average 
design complexity 
     The structure of a nonuniform quantizer, depicted 
in Fig. 3., consisting of a compressor C, a uniform 
quantizer, and expandor E in cascade, is called the 
compandor [4,8,9]. Hence, the arithmetic 
complexity of a scalar compandor is determined by 
the arithmetic complexities of compressor, uniform 
quantizer, and expandor. An uniform quantizer, 
consisting of encoder and decoder denoted with Ek 
and Dk respectively, has the arithmetic complexity 
equal to complexity of Lloyd-Max's scalar 
quantizers with the same number of quantization 
levels N since uniform quantizer can be 
implemented using the same building blocks as 
those of Lloyd-Max's scalar quantizers. Thereby, the 
arithmetic complexity of scalar compandor can be 
specified with following expression: 

( ) ( )compressorquantizeruniformNAk 1+1+4=

      ( ) 3+4=exp1+ Nandor .                 (7) 
In the last equation we consider the fact that any 
compressor and expandor can be viewed as 
nonlinear amplifiers that performs one simple 
operation [4]. 
     It is important to emphasize that a uniform 
quantizer is completely specified by support region 
of the quantizer, i.e. by maximal input signal 
magnitude that can be fed to the quantizer not 
resulting in quantizer overload, and by the number 
of quantization levels N [4]. Therefore, it is obvious 
that memory complexity of uniform quantizer has a 
constant value (two). By reserving two memory 
addresses  in  order  to  describe  the compressor and 
expandor functions each we completely specified 
memory  complexity  of  compandor.  Therefore, we 

 
Fig. 3. Implementation of compandor 

 
can derive the following expression for evaluating 
the memory complexity of scalar compandors, 
denoted with Mk : 

( )+2= quantizeruniformM k  

       ( ) 4=exp2+ andorandcompressor .  (8) 
Analyzing the memory complexity of scalar 
compandors we deduce that it has very small and 
constant value not depending on the number of 
quantization levels. Therefore we confirm that the 
use of the compandor model can be very helpful 
when designing quantizers with a large number of 
quantization levels [8]. 
     Assuming that the arithmetic complexity is equal 
to the implementation complexity, average design 
complexity of the stalar compandor can be carried 
out combining Eqs. (2), (7), (8): 

   ( )108
3

1 += NK k .   (9) 

 
 
2.3. Analysis of hybrid quantizer average 
design complexity  
     In order to reduce the deficiencies introduced by 
Lloyd-Max's quantizer and compandor that were 
observed and analyzed in [1, 2, 9], we proposed a 
new model of scalar quantizer. The proposed model 
of scalar quantizer denoted as the hybrid model 
combines the Lloyd-Max's quantizer model and the 
compandor model. Namely, for L<<N, applying the 
model of compandor to inner region O2 (depicted in 
Fig. 4), i.e., to N-2L inner cells, and the Lloyd-
Max’s model to outer region that is union of regions 
O1 and O3 (also depicted in Fig. 4), i.e., to 2L outer 
cells, it is possible to design the N-levels hybrid 
scalar quantizer. Observe that the hybrid model is a 
general quantization model which for L=N/2 
represents the Lloyd-Max's model, while in case of 
L=0 represents the model of compandor.  
     Let us consider the hybrid model 
implementation. From the Fig. 5. it is evident that 
the considered input signal x, is brought first to the 
inputs of selectors denoted with S1, S2 and S3 which 
functions are defined as Si(x)=1 if x∈ Oi and 0 
otherwise, i=1, 2, 3 [4]. Also, the considered input 

x 

Uniform quantizer  

i 
Ek C Dk E 
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signal x is brought to the switches, denoted with 
SW1, SW2, and SW3. Depending on the region in 
which the input signal lies, one of the 
aforementioned switches closes, enabling the input 
signal to be passed to the one of three possible 
branches: 
 
Branch 1. to the encoder 1, denoted with E1 
Branch 2. to the compressor, denoted with C and 
than to  the encoder 2, denoted with E2  
Branch 3. to the encoder 3, denoted with E3.  
The adequacy of introducing the structural blocks, 
denoted with E1, E2, E3, D1, D2, and D3, results from 
the fact that any scalar quantizer can be viewed as 
the combined effect of two operations, performed by 
encoder and decoder. 
     Note that the processes applied on the signal, 
transmitted along the first and the third branches are 
equal. First, let us consider the case when the input 
signal is brought to the encoder E1. In such a case, 
the hybrid model proposes the use of Lloyd-Max's 
model, i.e., the use of optimal encoder and decoder 
(E1 and D1). Encoder E1 generates index that is then 
transmitted over the communication channel. At the 
received end of the communication system, the 
transmitted index is brouht to the input of three 
blocks, denoted with Sd1, Sd2 i Sd3, known as 
decoder selectors and defined with:  
Sd1(x)=1 if x∈ I1= [1,L] and 0 otherwise;  
Sd2(x)=1 if x∈ I2=[L+1,N-L-1] and 0 otherwise; 
Sd3(x)=1 if x∈ I3=[N-L, N] and 0 otherwise. 
For instance, when Sd1 is indicating that index i 
belong to the range I1, switch, denoted with SW4 is 
closing, enabling the index to be sent to the decoder 
D1 which is subsequently generating the output 
representation. 
     Let us now consider the case when the input 
signal is brought to the compressor. In such a case, 
the hybrid model proposes the use of the compandor 
model, i.e., the use of compressor (C), uniform 
quantizer and expandor (Ex). Note that the uniform 
quantizer can be represented as a combination of 
encoder E2 and decoder D2. If the decoder selector 
Sd2 allows closedown of SW5, the index generated by 
E2 and transmitted over the channel is brought to the 
decoder D2. In order to obtain the output 
representation, the output of the observed decoder 
needs to be expanded by the expandor. Herewith, we 
accomplish the detail explanation of the hybrid 
model implementation. 
     Let us consider the complexities of a hybrid 
quantizer. From Fig.5 it is evident that the arithmetic 
and implementation complexities are determined 
with   the   arithmetic   complexity  of   Lloyd-Max's 

 
 

Fig. 4. Illustration of the inner region and the outer 
region of the hybrid scalar quantizer 

 
quantizer having L quantization levels, as well as 
with the arithmetic complexity of compandor having 
N-2L quantization levels and the combination logic 
that consists of selectors S1, S2, S3, Sd1, Sd2, Sd3, 
switches SW1, SW2, SW3 SW4, SW5, SW6, and two 
adders. Therefore, the arithmetic complexity of 
hybrid quantizer, denoted with AH, is given as: 

( ) ( ) ( ) +2+6+3×6= addersswitchesselectorsAH

( )( )+1+4×2+ quantizerMaxLloydL  

( ) ( ) 31+4+4=)3+4(+ LNcompandorL-N .(10) 
The memory complexity of hybrid scalar quantizer 
is also determined by the memory complexities of 
Lloyd-Max's quantizer and compandor. Considering 
the fact that Lloyd-Max's quantizer, applied when 
designing outer region of hybrid quantizer, can be 
completely defined with the threshold between the 
inner and the outer region, denoted in the Fig. 4. 
with xN-L=-xL and with the 2L reconstruction offsets 
(distances from the representation levels to the 
nether decision thresholds) [1, 2], memory 
complexity of a hybrid quantizer can be given as: 

( ) ( )compandoroffsetstionreconstrucLM H 4+2=

4+2= LM H  .              (11) 
Finally, the average design complexity of the hybrid 
quantizer is: 

 ( )35+10+8
3

1
= LNK H .             (12) 

 

3.   Numerical results 
     Analyzing the average designing complexities of 
Lloyd-Max's scalar quantizers, scalar compandors 
and hybrid scalar quantizers we ascertain that these 
complexities grows with the number of quantization 
levels N. Numerical values of the aforementioned 
complexities are computed using the Eqs. (6), (9) 
and (12) when the number of quantization levels 
varies N=32, 64, 128, 256, 512, 1024 and are listed 
in the Table 1. Observe that analysis of the 
performances of the hybrid model [1, 2] indicates 
the optimal  value  of L=2. Therefore, the analysis is 

x0=-∞ 

O1 

xN=∞ 
O3 O2 

xL xN-L 
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Fig. 5. Implementation of the hybrid scalar quantizer model;  
 
carried out assuming the specified parameter value 
of L. 
     Results from Table 1 indicate that the smallest 
average design complexity, for a fixed number of 
quantization levels N, corresponds to scalar 
compandors while the largest average design 
complexity corresponds to Lloyd-Max's scalar 
quantizers. Also, it is obvious that the average 

design complexity of hybrid scalar quantizers, in 
case of large number of quantization levels N 
(N=256, 512, 1024), is significantly smaller than the 
average designing complexity of the Lloyd-Max's 
scalar quantizers.  
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 KLM KK KH (L=2) 

N=32 107.67 88.67 103.67 

N=64 214.33 174 189 

N=128 427.67 344.67 359.67 

N=256 854.33 686 701 

N=512 1707.67 1368.67 1383.67 

N=1024 3414.33 2734 2749 

 
Table 1. Comparison of average design complexities  

 
 

4.   Conclusion 
     Numerical results demonstrate that the smallest 
average design complexity, for a fixed number of 
quantization levels N, corresponds to scalar 
compandors while the largest complexity 
corresponds to the Lloyd-Max's scalar quantizers. 
The memory complexity of scalar compandors is 
small and constant, not depending on the number of 
quantization levels. Although we have already 
shown that the performances of compandor are far 
from optimal [1, 2], here we demonstrated that the 
use of compandor model can still be very helpful for 
designing quantizers with a large number of 
quantization levels when the small design 
complexity is the primary engineers' goal. However, 
when the task is to approach the optimal 
performance, we propose the use of hybrid scalar 
quantizer which can provide acceptable compromise 
between the optimal performances and the design 
complexity. Specifically, it is already shown [1,2] 
that the performances of hybrid scalar quantizers are 
almost equal to the optimal performances of Lloyd-
Max's scalar quantizers. In turn, here we have 
demonstrated that in case of large number of 
quantization levels N (N=256, 512, 1024) by using 
the hybrid scalar quantizers the average design 
complexity is significantly reduced in comparison to 
the average design complexity of the Lloyd-Max's 
scalar quantizers. Therefore the analysis presented in 
this paper has the practical importance. Particularly, 
it provides justification for near-optimal and 
complexity-reducing design strategies of scalar 
quantizers having large number of quantization 

levels N (N=256, 512, 1024) that can be used for 
efficient source coding of images [4] and speech [9].  
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