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Abstract: - In this paper, we propose an encryption algorithm with anti-symmetric keys. The algorithm is 
assumed to be known to public, but the keys are kept private. The primary key (at the encryption site) is 
designed based on matrix transformation with the requirement that all arithmetic operations are strictly over 
the integer field. Therefore, there are no round off errors when the signal is deciphered at the receiver site. The 
anti-symmetric key algorithm is designed for constructing such a primary key in the proposed encryption 
scheme, which is shown to be robust against attacks. 
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1   Introduction 
    Information security and integrity are protected 
by encryption techniques.  Encryption is the process 
of scrambling the original form of information by 
mathematical algorithms. This process results in 
enciphered information that will not give away its 
content to any unauthorized person. With the rapid 
progress of internet and advances in communication 
technology, there is a great need of more efficient 
and faster cryptography algorithms than those 
classical algorithms such as IDEA-International 
Data Encryption Algorithm or DES-Data Encryption 
Standard [1]. In the past ten years or so, a number of 
innovative encryption techniques have been 
developed for network security and signal 
encryption [2-5]. Few of those algorithms satisfy 
both efficient and secure encryption. 
    In this paper, we present an anti-symmetric 
encryption scheme based on matrix masking. The 
proposed technique is efficient and satisfies 
Kerckhoffs' principle in cryptography. This 
encryption technique is developed within the realm 
of Digital Signal Processing. As in DSP, analog 
signals are converted into digital signals through 
sampling and quantization. Each sample of a digital 
signal is presented in the form of an integer or an 
array of binary bits. Therefore, matrix encryption 
becomes a natural resort for scrambling the digital 
signal data via multiplications between the 
transformation matrix and the data. The main idea is 
to assemble the data into multiple matrices with an 
associate key. The data matrix is then multiplied 
with another matrix, the primary key. Decryption is 

done by rearranging the numbers into matrices (the 
inverse of the associate key), and then multiplied by 
the inverse of the primary key matrix. Yang et. al. 
[6] used matrix transformation to develop an 
asymmetric block encryption scheme. Their method 
was shown to be effective for the encryption of large 
amounts of data, such as digital images, in terms of 
less computation complexity and better security. 
However, a significant setback of their scheme is the 
inevitable round off errors in and out of the DCT 
(Discrete Cosine Transform) domain, which could 
lead to imperfect decryption, distortion, and loss 
information. This problem can be magnified when 
large dimensional key matrices are adopted. The 
anti-symmetric key algorithm presented in this paper 
is developed under the restriction that all arithmetic 
operations are done over the integer field. This is 
made possible with a special design on the primary 
key integral matrix such that its inverse is also an 
integral matrix. Therefore, it is guaranteed that there 
are no round off errors at both the encryption site 
and the decryption site, making the proposed 
encryption system a lossless system in addition to its 
security. Details of the key algorithms are found in 
section 2, followed by attack analysis and an 
application to speech coding in sections 3 and 4 
respectively. 
 
2   Anti-symmetric key algorithm 
    There are two keys at the encryption site and 
decryption site respectively. The two keys, the 
primary key and the associate key, at the receiver 
end are the inverse of the two keys at the sender site. 
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They are not identical, but closely related. That is 
why this is called an anti-symmetric key encryption 
system. 
    The associate key, , defined as an operator 
taking matrices from one vector space to another 
vector space, i.e. , where 

αT

NMLk ZZT ×× →:α
LkZ ×  is 

the subspace of all K by L matrices over the integer 
field Z, same for NMZ × .  The associate key 
functions as an assembling operator that shuffles the 
data of the original signal into a new set of data (as a 
matrix).  The operator, , is required to be 

homeomorphic, i.e. the inverse operator,  exists.  
It is also required that such an operator is nontrivial 
in a sense that the original signal cannot be easily 
recovered from the new set of data.  For example, 
given a speech signal, which is usually stored as a 
one-dimensional array, one only needs to use the 
corresponding cardinal indices associated with the 
original signal. The associate key is characterized 
by a random or a special protocol shuffling of the 
indices. Then, the elements in the sequence of the 
original signal are rearranged accordingly. At the 
receiver site, the order of the elements in the original 
sequence can be recovered by sorting as denoted by 

. Same process can be applied to two-
dimensional signals such as images. One technical 
point for the output of is that, if , one 
simply pad zeros to the end of the data so that the 
new set of data can be stored as a matrix with 
appropriate dimensions. 

αT
1−
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αT

1−
αT
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    The design of the primary key is the center piece 
of this paper.  Let denote the primary key, the 
kernel of which is in essence a matrix multiplication, 

.  Therefore, at the sender site, a 

message  is encrypted as , 
and, at the receiver site, the message is decrypted as 

.  As mentioned earlier, the kernel 

matrix of  is required to be an integral matrix so 
that no roundoff errors take place during the process 
of decryption.  The following theorem provides 
theoretical support of the proposed technique. 

pT

NMNM
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}{111 STTTs p
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Theorem 1. Suppose NNZA ×∈ and A is a 
nonsingular matrix, then NNZA ×− ∈1  if and only if 

. 1)det( ±=A
 

Proof: Since A is invertible, and with the fact that 

)det(
1)det( 1

A
A =− , then . Since 1)det()det( 1 =− AA

NNZA ×∈ , ZA ∈)det( . If NNZA ×− ∈1 , then 
.  Therefore, .  Conversely, 

if
ZA ∈− )det( 1 1)det( ±=A
1)det( ±=A , use the inverse formula, 

)det(

T*
1

A
AA =− , where  is the adjunct matrix of A, 

let , where  is a 
submatrix of A by eliminating the i

*A

)det()1( ),( ***
ij

ji
ijij AaaA +−== ijA

th row and jth 

column of A.  Hence which leads to the 

result  

,)det( ZAij ∈

.1 NNZA ×− ∈
 
    We seek a primary key, an integral matrix, in the 
proposed algorithm under the condition that the 
inverse of the matrix is also an integral matrix so 
that there will be no roundoff errors during the 
decryption process. Theorem 1 provides a necessary 
and sufficient condition for constructing such 
integral matrices, i.e. the determinant of the matrix 
has to be one. Consider the integer field as well the 
complexity of evaluating a determinant, the chance 
for the determinant of an arbitrary integral matrix to 
equal plus or minus one is very slim. It is the goal of 
this paper, however, to develop algorithms for 
systematic construction of such matrices. 
    Suppose we have at hand an arbitrary integral 
matrix, the main idea is to allow one or two 
(maximum two in this paper) free parameters in the 
entries of the matrix. We will solve a number of 
Diophantine equations for the undetermined free 
parameters so that the solutions will make the 
determinant of the new matrix equal plus or minus 
one.  The general form of the Diophantine equation 
[7] is given by 
                         1±=+++ dcybxaxy                   (1) 
where the left side of eqn.(1) equals the determinant 
of the matrix A, i.e.  dcybxaxyA +++=)det( , and 

. , , , , , Zyxdcba ∈  We consider the following three 
cases: 

(i) One free parameter x , corresponding linear  
     Diophantine equation .0 ,1 ≠±=+ bdbx  
(ii)  Two free parameters, , corresponding      yx  and 
      linear Diophantine equation 1±=++ dcybx ,    
       .022 ≠+ cb
(iii) Two free parameters, , corresponding      yx  and 
      nonlinear Diophantine equation  
      .0  ,1 ≠±=+++ adcybxaxy  

Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007         141



    See (2) for an interpretation of the above three 
cases.  It is worth noticing that case (ii) emerges 
whenever the two free parameters are on the same 
row or column.  Otherwise, the Diophantine 
equation will be nonlinear (1). 
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Next, we need to determine the coefficients in the 
Diophantine equation, which is done as follows: 
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    Now, the coefficients in Diophantine equation (1) 
are totally determined, we proceed to solve these 
three cases respectively.  Case (i) is the easiest, 
because the solution exists as long as the coefficient 
b is a factor of .  In general, such a solution 
is hard to find. It can be considered as a low 
probability event. That is why we introduce two free 
parameters in (ii) and (iii). 

1±− d

    For case (ii), the linear Diophantine equation is 
rewritten as 
                             .                                (3) ecybx =+

Without loss of generality, we assume . 
The Diophantine equation can be solved via the 
Euclidean algorithm as follows: 

022 ≠+ cb

 
Step 1. Find the greatest common divisor between b 
and c, i.e. gcd(b,c), as follows: 

                  

1
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Divide both sides of (3) by to get 1−ir

.
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r
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r
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If 
1−ir

e
 is not an integer, there is no integer solution 

to (3).  Otherwise, proceed to step 2 with a new 
Diophantine equation 
                                                           (5) 1'' =+ ycxb

where 
1

'

−

=
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1

'

−
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cc .  The term 

1−ir
e will be 

used to multiply the solution of (5) to obtain the 
solution of (3). 
 
Step 2. Use the matrix form of the Euclidean 
algorithm to solve for x and y in (5), begin with 
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Note: The q-matrix in (6) alternates with -q in 
position (1,2) and (2,1) in the matrix with -q starting 
in (1,2) position during the iterations. When -q is in 
(1,2) position, the new divisor will be in (1,3) 
position in the new matrix as a result of 
multiplication in (6). When -q is in (2,1) position of 
the q-matrix, the new divisor will be in (2,3) 
position in the new matrix. Stop the iteration when 
zero appears in (1,3) or (2,3) position of the new 
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matrix, but not both, and the nonzero number must 
be 1. The other two numbers on the same row are 

solutions for x and y, multiply x and y by 
1−ir

e  to get 

the solution for (3). 
    For case (iii), referring to the nonlinear 
Diophantine equation (1), we first rewrite it as 
                                           (7) 0=+++ ecybxaxy

where  from (1).  Use the following 
algorithm to solve for x and y: 

1±−= de

 
Step 1. Factor (7) into 
                                   (8) aebcbaycax −=++ ))((
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Step 2b. If , use prime factorizations to 
find all possible divisors of such divisors 

 should satisfy 
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and Eqn. (8) yields the following possible solutions: 
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Otherwise, use new divisor and repeat the step (i) 
or (ii). 

jd

3 Performance analysis and attack 
analysis 

    As shown in the above discussions of the 
algorithms for constructing the integral matrix with 
an integral inverse, it is possible that there might be 
no solutions to a certain Diophantine equation. 
However, it only implies that the choices for the 
locations of the free parameters in a matrix are 
unsuitable. One can always pick different locations 
in the matrix for the free parameters and seek 
solutions. According to our experience, the 
possibility of finding an integral matrix with an 
integral inverse is much better with the proposed 

algorithm and the computational complexity is 
considerably low, examined from MATLAB's built 
in function FLOPS for counting float point 
operations. 
    As a demonstrative example, we apply the above 
algorithms to a random 3 by 3 integral matrix, 
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    In order to demonstrate the proposed encryption 
method, we encrypt a speech signal with an 
associate key based on a normally distributed 
random seed generator and a primary key matrix, a 
ten by ten integral matrix with integral inverse. The 
encrypted and decrypted signals are shown in Fig. 1. 
As discussed earlier, the decrypted signal is a prefect 
match of the original signal because of the specially 
designed primary key matrix. 
    Kerckhoffs' principle states that a cryptosystem 
should be secure even if everything about the 
system, except the key, is public knowledge; it was 
reformulated by Claude Shannon as ``the enemy 
knows the system''. We assume that the proposed 
algorithm is available to the public. However, the 
keys are kept secret. In order to break the 
cryptosystem, the attackers need to obtain the 
private keys in their own exact forms. This is 
difficult not only those keys can be renewed at any 
moment, but any attempt to reconstruct the keys 
would be in vain. First off, the associate key is 
constructed via a random seed generator. It is totally 
random. Therefore, it is impossible to predict or 
reconstruct. On top of that associate key, the 
primary key matrix is designed at will. To a certain 
degree, it is a random matrix too. Only one or two 
entries of the matrix are altered to make sure that the 
matrix has an integral inverse. Even for a small 
matrix such as an 8 by 8 matrix, there are 64 entries 
in the matrix, and there are infinitely many ways of 
assigning integers to those 64 spots simply because 
there are infinitely many integers. It is even more 
difficult to estimate the inverse of the primary key 
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directly because the inverse of an integral matrix 
(with a unit determinant) is usually a matrix with big 
numbers, see the 3 by 3 example earlier. What if the 
attackers are lucky to fabricate a matrix that is close 
to the private primary key? Will it post a serious 
threat? Not at all. It is well known in matrix theory 
that inverting a matrix is the most unstable matrix 
operation, which means that a small perturbation to 
the original matrix usually leads to a totally different 
inverse matrix comparing to the inverse of the 
original matrix. In order to demonstrate this 
property, we use the same speech signal as earlier. A 
small perturbation to the diagonal elements of the 
primary key matrix (other elements of the perturbed 
matrix are exactly the same as the primary key 
matrix) and the inverse of the resulted matrix is used 
to decrypt the coded signal. The reconstructed signal 
is plotted in the same window as the original signal, 
see Fig.2, the discrepancies are so significant that 
the end result is unacceptable. 
 
4   Conclusion 
    The main objective of this paper is to precisely 
reconstruct the signal at the decryption site with the 
proposed cryptosystem without sacrificing the 
security of the system. The proposed algorithms are 
heuristic and easy to implement. This scheme 
satisfies the characters of convenient realization, low 
computational complexity, and sound security. The 
existence of such integral matrices with integral 
inverses for the design of a primary key can be 
significantly improved if one allows more than two 
free parameters in the algorithm. The authors have 
made good progress toward generalizing the 
algorithms to more than two free parameters. The 
results will be reported in a future paper. 
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Figure 1.  (a) A speech signal; (b) Encrypted signal 

with an 8 by 8 primary key matrix; (c) Decrypted 
signal with the inverse of the primary key 

matrix, a perfect match with the original signal. 
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Figure 2. Comparison between the original signal 
and the decrypted signal with a slightly 

perturbed primary key matrix 
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