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Abstract: In this paper, we present a numerical method to compute the ’t Hooft-Polyakov static magnetic
monopoles as an asymptotic limit of a coupled system of evolution equations. An efficient numerical scheme
and its results will be presented.

Key–Words:Monopoles, Yang-Mills-Higgs equations, Numerical Scheme

1 Introduction
We consider magnetic monopoles in non-Abelian
gauge theories which were discovered by ’t Hooft
[18] and Polyakov [14] as solutions of coupled
Yang-Mills-Higgs systems. The dynamical magnetic
monopoles are described by the equations of motion
derived from the Lagrangian:
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Here�a is a scalar field (a = 1; 2; 3), Fa

�� is the tensor
of the Yang-Mills fieldAa,D� is the covariant deriva-
tive:

F�� = 5�A� �5�A� + ig[A�; A� ]

D�� = 5��+ ig[A�; �] (2)

where [ ; ] denotes the product insu(2); g and �
are coupling constants. The equations of motion in
dimensionless quantities are

D�D
�� = ���(j � j2 �1)

D�F
��

= [�;D��] (3)

In this paper, we restrict our study to spherically
symmetric configuration solutions of the finite energy
functional
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The functionsS andR are found as the minimum of
the functional (4) as demonstrated in [4] . The Euler-
Lagrange variational derivation of (4) leads to the fol-
lowing coupled ordinary differential equations

Srr � 1
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= 0 (5)
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The functionsS(r) and R(r) must satisfy the
boundary conditions at the origin and at infinity:

R(0) = 0 S(0) = 0 (6)

R(r)! 1 S(r)! 1 asr!1

The conditions (6) are consequence of the sym-
metry and the continuity ofS(r) andR(r) at the cen-
ter of the monopole. The asymptotic behavior of these
functions can be described by expanding their Tay-
lor’s series aroundr = 0 and atr ! 1. The asymp-
totic limits of the functionsS(r) andR(r) with criti-
cal value� are given by:

S(r) = O(r2) for r ! 0

R(r) = O(r) for r ! 0

S(r) = 1 +O(e�r) for r !1
R(r) = 1 +O(e��r) for r !1

In this paper we introduce an efficient numerical
method for solving the system of differential equa-
tions (5). Our approach is based first on the trans-
formationS(r) = r�(r) that reduces the order of the
solution at the center of the monopole. This allows us
to construct a finite difference scheme to compute the
solution, with any desired degree of accuracy, while
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conserving the energy. Second this approach is based
on implementing the gradient flow for minimizing the
energy functional using finite difference scheme.

As a historical remark, we point out that the
first calculation of the magnetic monopoles were per-
formed by Bogomolnyi and Marionov [6]. Their
methods is based on integrating the system (5) us-
ing a quasilinearization approach (Newton’s method)
and iterating until the difference between computed
energies are acceptable. Ajithkumar and Sabir [2] de-
scribed numerical approximation to obtain the solu-
tions of the monopoles in the form of power series
involving a large number of arbitrary constants with
some limitations.

2 Numerical Scheme
We had introduced the variational discretization of a
similar Lagrangian to (4) in connection with the com-
putations of magnetic vortices. The solutions of the
derived equations are the minimum of the correspond-
ing energy [1]. In this section, we introduce the re-
duction transformation and the gradient flow evolu-
tion equations, then we present the finite difference
scheme with a proof of its linearized stability.

2.1 Reduction Transformation
The functionS(r) approaches zero in the order ofr2,
so we reduce the order ofS(r) by one using the trans-
formation

S(r) = r�(r) (7)

with the corresponding boundary conditions

�(0) = �(1) = 0 (8)
1Z
0
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2
)dr = �2j10 = 0

Substitution (7) is essential for the stability of the pro-
posed discretization scheme to solve the system of
equations (5). Using the substitution (7) and the iden-
tity

(@rS)
2
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r
(9)

in the Lagrangian (4) and the finite energy assump-
tion. Next step, we use the gradient flow approach

(Rt; �t) = ÆL(R;�)(R;Rr; �; �r)

to derive the variational equations
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2.2 Finite Difference Scheme
We point out that the energy functional
L(R;Rr; �; �r) is positive definite and it has a unique
minimum [1]. This minimum is the stationary limit of
the nonlinear parabolic system of equations

d

dt
� = �ÆL�

d

dt
R = �ÆLR (11)

We introduce a second order implicit scheme, for
which the functionsR(r) and�(r) are the evolution
limits:
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where�nm = �(n�t;mh); Rn

m = R(n�t;mh),
andG� andGR are nonlinear remaining terms from
L� andLR evaluated at time stepn�t as follows

G� = 2
�n
m+1 � �n

m�1

2�r

� 1

rm
�nm(1� rm�

n

m)(2� rm�
n

m)

+ (1� rm�
n

m
)(Rn

m
)
2

GR = 2
Rn

m+1 �Rn

m�1

2�r

� 2

rm
Rn

m
(1� rm�

n

m
)
2

+
�

2
rmR

n

m(1 � (Rn

m)
2
) (14)

Proposition 1 The implicit scheme (12-13 ) is uncon-
ditionally stable and it is of orderO(�t2) +O(h2).

Proof: We linearize the equations (12 and 13 ) and
apply the Fourier transform by replacing�n

m
andRn

m

by �neim�h. We obtain the quadratic equation

(3 + 4�rmsin
2
(�h=2))�2 � 4� + 1 = 0
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for both equations (12 and 13 ) . Solving for� we get

� =
2�p1� 4�rmsin2(�h=2)

2 + 1 + 4�rmsin2(�h=2)
=

2�p1� w

2 + 1 + w

If 1� w is nonnegative, then we have

j�j � 2�p1� w

2 + 1 + w
� 1

if 1� w is negative, then
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for which
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Thus for any value of� or � both roots are
bounded by 1. This proves the unconditional stabil-
ity of (12 and 13 ). The order of the scheme is de-
rived from the construction of the finite difference al-
gorithm. ut

The discretized approximations of the system of
equations based on this scheme lead to tridiagonal
system of equations with variable entries depending
on the distancerm from the center of the monopole
and has the form

X =

0
BBBBBB@

1 �1 0 0 : : : 0 0

�1 2 �2 0 : : : 0 0

0 �2 3 �3 : : : 0 0

...
...

...
...

...
. . .

...
0 0 0 0 : : : �n�1 n

1
CCCCCCA

where�i = � 2�t

�2r
� 2ri andi = 3 + 2�i.

These equations are solved by standard techniques.
We terminate the iteration process whenever the dif-
ference between consecutive energy values becomes
smaller than a preassigned number. For example,
whenh = 0:01, we terminate the iterations when the
difference is less than10�8, that is

jL(�n+1; Rn+1
)� L(�n; Rn

)j < 10
�8

In Figure 1 we present the numerical solutionR(r)
of the magnetic monopoles corresponding to the pa-
rameters� = 0:1; 1:0; 100 where the graph with
largest slope corresponds to� = 100. In Figure 2
we present the numerical solutionS(r) of the mag-
netic monopoles corresponding to the the parameters
� = 0:1; 1:0; 100 where the graph with largest slope
corresponds to� = 100.

Figure 1:R(r) for � = 0:1; 1; 100

Figure 2:S(r) for� = 0:1; 1; 100
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3 CONCLUSION
In this paper, we have presented a novel numeri-
cal method to solve the second-order field equations
of the ’t Hooft-Polyakov magnetic monopole theory.
This numerical scheme was based on the motion of
gradient flows approach in the form of an implicit
finite difference scheme. This developed approach
can be applied to compute various monopole config-
urations of Yang-Mills equations and vortices of the
Ginzburg-Landau equations of superconductivity. In
addition, a stability proof of the numerical scheme
was given. Our numerical results were demonstrated
graphically for magnetic monopoles of any multiplic-
ity. The computed solutions in this paper can be
used as initial data to study the dynamic evolution of
monopoles and vortices.
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